REFERENCES

1. Martin J, Shenfield G. The hazards of rapid approval of new drugs. Aust Prescr 2016;39:2-3.

2. Lytkin DV, Zagayko AL. The effect of third-generation aromatase inhibitors on lipid metabolism in hamsters under experimental diet-induced metabolic syndrome. World Science 2017;1:23-7.

3. Lytkin DV, Zagayko AL, Briukhanova TO. The effect of third-generation aromatase inhibitors on aromatase activity in visceral adipose tissue. Regulatory Mechanisms in Biosystems 2018;9:209-15.

4. U.S. Department of Health & Human Services. Aromasin (Exemestane) Tablets Drug Approval Package. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/99/20-753_aromasin.cfm. [Last accessed on 3 Sep 2019].

5. Evans TR, Di Salle E, Ornati G, Lassus M, Benedetti MS, et al. Phase I and endocrine study of exemestane (FCE 24304), a new aromatase inhibitor, in postmenopausal women. Cancer Res 1992;52:5933-9.

6. eHealthMe personalized medication management. Who have Ascites with Exemestane - from FDA reports. Available from: https://www.ehealthme.com/ds/exemestane/ascites/. [Last accessed on 3 Sep 2019].

7. Neubert A, Dormann H, Prokosch HU, Bürkle T, Rascher W, et al. E-pharmacovigilance: development and implementation of a computable knowledge base to identify adverse drug reactions. Br J Clin pharmacol 2013;76 Suppl 1:69-77.

8. Directive (EU) 2010/63/EU of the European Parliament and of the Council of 22 September 2010 On the Protection of Animals Used for Scientific Purposes. Official Journal of the European Union 2010;276:33-79.

9. Wong SK, Chin KY, Suhaimi FH, Fairus A, Ima-Nirwana S. Animal models of metabolic syndrome: a review. Nutr Metab (Lond) 2016;13:65.

10. Connolly BA1, O’Connell DP, Lamon-Fava S, LeBlanc DF, Kuang YL, et al. The high-fat high-fructose hamster as an animal model for niacin’s biological activities in humans. Metabolism 2013;62:1840-9.

11. Briand F, Brousseau E, Quinsat M, Burcelin R, Sulpice T. Obeticholic acid raises LDL-cholesterol and reduces HDL-cholesterol in the Diet-Induced NASH (DIN) hamster model. Eur J Pharmacol 2018;818:449-56.

12. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 2016;7:27-31.

13. Alturkistani HA, Tashkandi FM, Mohammedsaleh ZM. Histological stains: a literature review and case study. Glob J Health Sci 2015;8:72-9.

14. Manja V, Lakshminrusimha S. Principles of use of biostatistics in research. NeoReviews 2014;15:133-50.

15. Pedersen JS, Bendtsen F, Møller S. Management of cirrhotic ascites. Ther Adv Chronic Dis 2015;6:124-37.

16. Palmer BF. Regulation of potassium homeostasis. Clin J Am Soc Nephrol 2014;10:1050-60.

17. Ronconi V, Turchi F, Appolloni G, di Tizio V, Boscaro M, et al. Aldosterone, mineralocorticoid receptor and the metabolic syndrome: role of the mineralocorticoid receptor antagonists. Curr Vasc Pharmacol 2012;10:238-46.

18. Chiang JK, Chen CL, Tseng FY, Chi YC, Huang KC, et al. Higher blood aldosterone level in metabolic syndrome is independently related to adiposity and fasting plasma glucose. Cardiovasc Diabetol 2015;14:3.

19. Jeong IK. The role of cortisol in the pathogenesis of the metabolic syndrome. Diabetes Metab J 2012;36:207-10.

20. O’Hara L, O’Shaughnessy PJ, Freeman TC, Smith LB. Modelling steroidogenesis: a framework model to support hypothesis generation and testing across endocrine studies. BMC Res Notes 2018;11:252.

Journal of Unexplored Medical Data
ISSN 2572-8180 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/