1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74-108.

2. Siegel RL, Miller KD, Jemal A. Cancer stastistics, 2017. CA Cancer J Clin 2017;67:7-30.

3. Foubert F, Matysiak-Budnik T, Touchefeu Y. Options for metastatic colorectal cancer beyond the second line of treatment. Dig Liver Dis 2014;46:105-12.

4. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005;5:341-54.

5. Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 2007;25:1658-64.

6. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, et al. Genetic alterations during colorectal-tumor development. N Engl J Med 1988;319:525-32.

7. Novellasdemunt L, Antas P, Li VS. Targeting Wnt signaling in colorectal cancer. A review in the theme: cell signaling: proteins, pathways and mechanisms. Am J Physiol Cell Physiol 2015;309:C511-21.

8. Peeters M, Kafatos G, Taylor A, Gastanaga VM, Oliner KS, et al. Prevalence of RAS mutations and individual variation patterns among patients with metastatic colorectal cancer: a pooled analysis of randomised controlled trials. Eur J Cancer 2015;51:1704-13.

9. Cremolini C, Loupakis F, Antoniotti C, Lupi C, Sensi E, et al. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol 2015;16:1306-15.

10. Richman SD, Southward K, Chambers P, Cross D, Barrett J, et al. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials. J Pathol 2016;238:562-70.

11. Grady WM. Genomic instability and colon cancer. Cancer Metastasis Rev 2004;23:11-27.

12. Grady WM, Markowitz S. Genomic instability and colorectal cancer. Curr Opin Gastroenterol 2000;16:62-7.

13. Loukola A, Eklin K, Laiho P, Salovaara R, Kristo P, et al. Microsatellite marker analysis in screening for hereditary nonpolyposis colorectal cancer (HNPCC). Cancer Res 2001;61:4545-9.

14. Gausachs M, Mur P, Corral J, Pineda M, González S, et al. MLH1 promoter hypermethylation in the analytical algorithm of Lynch syndrome: a cost-effectiveness study. Eur J Hum Genet 2012;20:762-8.

15. Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology 2010;138:2059-72.

16. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, et al. Signatures of mutational processes in human cancer. Nature 2013;500:415-21.

17. Klingbiel D, Saridaki Z, Roth AD, Bosman FT, Delorenzi M, et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann Oncol 2015;26:126-32.

18. Guerra J, Pinto C, Pinto D, Pinheiro M, Silva R, et al. POLE somatic mutations in advanced colorectal cancer. Cancer Med 2017;6:2966-71.

19. Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, et al. The consensus molecular subtypes of colorectal cancer. Nat Med 2015;21:1350-6.

20. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014;515:563-7.

21. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med 2015;372:311-9.

22. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 2013;369:134-44.

23. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 2009;206:3015-29.

24. National Comprehensive Cancer Network. Colon cancer (Version 2.2017). Available from: [Last accessed on 27 Sep 2018].

25. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:2509-20.

26. Patnaik A, Kang SP, Rasco D, Papadopoulos KP, Elassaiss-Schaap J, et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res 2015;21:4286-93.

27. Diaz LA, Marabelle A, Delord J, Shapira-Frommer R, Geva R, et al. Pembrolizumab therapy for microsatellite instability high (MSI-H) colorectal cancer (CRC) and non-CRC. Available from: [Last accessed on 27 Sep 2018].

28. Overman M, Kopetz S, McDermott R, Leach J, Lonardi S, et al. Nivolumab ± ipilimumab in treatment of patients with metastatic colorectal cancer with and without high microsatellite instability: CheckMate 142 interim results. Available from: [Last accessed on 27 Sep 2018].

29. Overman MJ, Lonardi S, Leone F, McDermott RS, Morse MA, et al. Nivolumab in patients with DNA mismatch repair deficient/microsatellite instability high metastatic colorectal cancer: update from CheckMate 142. Availabe from: [Last accessed on 27 Sep 2018].

30. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 2010;28:3167-75.

31. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012;366:2443-54.

32. Diaz LA, Le DT, Yoshino T, Andre T, Bendell JC, et al. KEYNOTE-177: randomized phase III study of pembrolizumab versus investigator-choice chemotherapy for mismatch repair-deficient or microsatellite instability-high metastatic colorectal carcinoma. Available from: [Last accessed on 27 Sep 2018].

33. Emambux S, Tachon G, Junca A, Tougeron D. Results and challenges of immune checkpoint inhibitors in colorectal cancer. Expert Opin Biol Ther 2018; doi: 10.1080/14712598.2018.1445222.

34. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012;366:2455-65.

35. Akbari O, Stock P, Singh AK, Lombardi V, Lee WL, et al. PD-L1 and PD-L2 modulate airway inflammation and iNKT-cell-dependent airway hyperreactivity in opposing directions. Mucosal Immunol 2010;3:81-91.

36. Sinicrope FA, Ou FS, Shi Q, Nixon AB, Mody K, et al. Randomized trial of FOLFOX alone or combined with atezolizumab as adjuvant therapy for patients with stage III colon cancer and deficient DNA mismatch repair or microsatellite instability (ATOMIC, Alliance A021502). Available from: [Last accessed on 27 Sep 2018].

37. Bendell JC, Powderly JD, Lieu CH, Eckhardt SG, Hurwitz H, et al. Safety and efficacy of MPDL3280A (anti-PDL1) in combination with bevacizumab (bev) and/or FOLFOX in patients (pts) with metastatic colorectal cancer (mCRC). Available from: [Last accessed on 27 Sep 2018].

38. Hochster HS, Bendell JC, Cleary JM, Foster P, Zhang W, et al. Efficacy and safety of atezolizumab (atezo) and bevacizumab (bev) in a phase Ib study of microsatellite instability (MSI)-high metastatic colorectal cancer (mCRC). J Clin Oncol 2017; doi: 10.1200/JCO.2017.35.4_suppl.673.

39. Bendell JC, Kim TW, Goh BC, Wallin J, Oh DY, et al. Clinical activity and safety of cobimetinib (cobi) and atezolizumab in colorectal cancer (CRC). Available from: [Last accessed on 27 Sep 2018].

40. Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, et al. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res 2006;12:1144-51.

41. Beatty GL, O'Dwyer PJ, Clark J, Shi JG, Bowman KJ, et al. First-in-human phase 1 study of the oral inhibitor of indoleamine 2,3-dioxygenase-1epacadostat (INCB024360) in patients with advanced solid malignancies. Clin Cancer Res 2017;23:3269-76.

42. Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 2014;74:5057-69.

43. Srivastava RM, Lee SC, Andrade Filho PA, Lord CA, Jie HB, et al. Cetuximab-activated natural killer and dendritic cells collaborate to trigger tumor antigen-specific T-cell immunity in head and neck cancer patients. Clin Cancer Res 2013;19:1858-72.

44. Eynde MVD, Mlecnik B, Machiels JPH, Debetancourt D, Bindea G, et al. Characterization of the immune microenvironment of synchronous primary tumor and liver colorectal metastases. Available from: [Last accessed on 27 Sep 2018].

45. Lee SJ, Kim JG, Chae YS, Kang BW, Lee IH, et al. Association of LAG-3 expression in tumor infiltrating immune cells with prognosis in patients with microsatellite instability high colon cancer. Availale from: [Last accessed on 27 Sep 2018].

46. Zhou G, Noordam L, Sprengers D, Doukas M, Boor PPC, et al. Blockade of LAG3 enhances responses of tumor-infiltrating T cells in mismatch repair-proficient liver metastases of colorectal cancer. Oncoimmunology 2018;7:e1448332.

47. Klebanoff CA, Acquavella N, Yu Z, Restifo NP. Therapeutic cancer vaccines: are we there yet? Immunol Rev 2011;239:27-44.

48. Vermorken JB, Claessen AM, van Tinteren H, Gall HE, Ezinga R, et al. Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet 1999;353:345-50.

49. Uyl-de Groot CA, Vermorken JB, Hanna MG Jr, Verboom P, Groot MT, et al. Immunotherapy with autologous tumor cell-BCG vaccine in patients with colon cancer: a prospective study of medical and economic benefits. Vaccine 2005;23:2379-87.

50. Schlag P, Manasterski M, Gerneth T, Hohenberger P, Dueck M, et al. Active specific immunotherapy with newcastle-disease-virus-modified autologous tumor cells following resection of liver metastases in colorectal cancer. First evaluation of clinical response of a phase II-trial. Cancer Immunol Immunother 1992;35:325-30.

51. Schulze T, Kemmner W, Weitz J, Wernecke KD, Schirrmacher V, et al. Efficiency of adjuvant active specific immunization with newcastle disease virus modified tumor cells in colorectal cancer patients following resection of liver metastases: results of a prospective randomized trial. Cancer Immunol Immunother 2009;58:61-9.

52. Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res 2017;27:74-95.

53. Sabado RL, Meseck M, Bhardwaj N. Dendritic cell vaccines. Methods Mol Biol 2016;1403:763-77.

54. Fong L, Hou Y, Rivas A, Benike C, Yuen A, et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci U S A 2001;98:8809-14.

55. Caballero-Baños M, Benitez-Ribas D, Tabera J, Varea S, Vilana R, et al. Phase II randomised trial of autologous tumour lysate dendritic cell plus best supportive care compared with best supportive care in pre-treated advanced colorectal cancer patients. Eur J Cancer 2016;64:167-74.

56. Shimodaira S, Sano K, Hirabayashi K, Koya T, Higuchi Y, et al. Dendritic cell-based adjuvant vaccination targeting wilms' tumor 1 in patients with advanced colorectal cancer. Vaccines (Basel) 2015;3:1004-18.

57. Lazoura E, Apostolopoulos V. Rational peptide-based vaccine design for cancer immunotherapeutic applications. Curr Med Chem 2005;12:629-39.

58. Berinstein NL. Carcinoembryonic antigen as a target for therapeutic anticancer vaccines: a review. J Clin Oncol 2002;20:2197-207.

59. Ahsan A, Ramanand SG, Bergin IL, Zhao L, Whitehead CE, et al. Efficacy of an EGFR-specific peptide against EGFR-dependent cancer cell lines and tumor xenografts. Neoplasia 2014;16:105-14.

60. Kimura T, McKolanis JR, Dzubinski LA, Islam K, Potter DM, et al. MUC1 vaccine for individuals with advanced adenoma of the colon: a cancer immunoprevention feasibility study. Cancer Prev Res (Phila) 2013;6:18-26.

61. Miyagi Y, Imai N, Sasatomi T, Yamada A, Mine T, et al. Induction of cellular immune responses to tumor cells and peptides in colorectal cancer patients by vaccination with SART3 peptides. Clin Cancer Res 2001;7:3950-62.

62. Okuno K, Sugiura F, Inoue K, Sukegawa Y. Clinical trial of a 7-peptide cocktail vaccine with oral chemotherapy for patients with metastatic colorectal cancer. Anticancer Res 2014;34:3045-52.

63. Sinicrope FA, Rego RL, Ansell SM, Knutson KL, Foster NR, et al. Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology 2009;137:1270-9.

64. Marshall JL, Gulley JL, Arlen PM, Beetham PK, Tsang KY, et al. Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J Clin Oncol 2005;23:720-31.

65. Kaufman HL, Lenz HJ, Marshall J, Singh D, Garett C, et al. Combination chemotherapy and ALVAC-CEA/B7. 1 vaccine in patients with metastatic colorectal cancer. Clin Cancer Res 2008;14:4843-9.

66. Rowe J, Cen P. TroVax in colorectal cancer. Hum Vaccin Immunother 2014;10:3196-200.

67. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 2015;33:2780-8.

68. Coffin R. Interview with Robert Coffin, inventor of T-VEC: the first oncolytic immunotherapy approved for the treatment of cancer. Immunotherapy 2016;8:103-6.

69. Kooby DA, Carew JF, Halterman MW, Mack JE, Bertino JR, et al. Oncolytic viral therapy for human colorectal cancer and liver metastases using a multi-mutated herpes simplex virus type-1 (G207). FASEB J 1999;13:1325-34.

70. Geevarghese SK, Geller DA, de Haan HA, Hörer M, Knoll AE, et al. Phase I/II study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver. Hum Gene Ther 2010;21:1119-28.

71. Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, et al. Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer 2016;52:50-66.

72. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 2012;72:917-27.

73. Vaughn CP, Zobell SD, Furtado LV, Baker CL, Samowitz WS. Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes Chromosomes Cancer 2011;50:307-12.

74. Posey AD Jr, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, et al. Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 2016;44:1444-54.

75. Chmielewski M, Rappl G, Hombach AA, Abken H. T cells redirected by a CD3ζ chimeric antigen receptor can establish self-antigen-specific tumour protection in the long term. Gene Ther 2013;20:177-86.

76. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 2011;19:620-6.

Journal of Unexplored Medical Data
ISSN 2572-8180 (Online)
Follow Us


All published articles are preserved here permanently:


All published articles are preserved here permanently: