REFERENCES

1. Zhou T, C Cavalcante R, Ge C, Franceschi RT, Ma PX. Synthetic helical peptides on nanofibers to activate cell-surface receptors and synergistically enhance critical-sized bone defect regeneration. Bioact Mater. 2025;43:98-113.

2. Giese H, Meyer J, Unterberg A, Beynon C. Long-term complications and implant survival rates after cranioplastic surgery: a single-center study of 392 patients. Neurosurg Rev. 2021;44:1755-63.

3. Koller M, Rafter D, Shok G, Murphy S, Kiaei S, Samadani U. A retrospective descriptive study of cranioplasty failure rates and contributing factors in novel 3D printed calcium phosphate implants compared to traditional materials. 3D Print Med. 2020;6:14.

4. Herring SW. Mechanical influences on suture development and patency. Front Oral Biol. 2008;12:41-56.

5. Vidal L, Kampleitner C, Brennan MÁ, Hoornaert A, Layrolle P. Reconstruction of large skeletal defects: current clinical therapeutic strategies and future directions using 3D printing. Front Bioeng Biotechnol. 2020;8:61.

6. Qi J, Yu T, Hu B, Wu H, Ouyang H. Current biomaterial-based bone tissue engineering and translational medicine. Int J Mol Sci. 2021;22:10233.

7. Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C Mater Biol Appl. 2021;130:112466.

8. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66.

9. Wong CHB, Leung YY. Prevention and management of complications from Le Fort I osteotomy. Curr Probl Surg. 2024;61:101635.

10. Liantis P, Mavrogenis AF, Stavropoulos NA, et al. Risk factors for and complications of distraction osteogenesis. Eur J Orthop Surg Traumatol. 2014;24:693-8.

11. Brody-Camp S, Winters R. Craniofacial distraction osteogenesis. Treasure Island (FL): StatPearls Publishing; 2023.

12. Peterson J, Wang Q, Dechow PC. Material properties of the dentate maxilla. Anat Rec A Discov Mol Cell Evol Biol. 2006;288:962-72.

13. Shahzad F. Pediatric mandible reconstruction: controversies and considerations. Plast Reconstr Surg Glob Open. 2020;8:e3285.

14. Liang C, Marghoub A, Profico A, et al. A physico-mechanical model of postnatal craniofacial growth in human. iScience. 2024;27:110617.

15. Zawiślak E, Olejnik A, Frątczak R, Nowak R. Impact of osteotomy in surgically assisted rapid maxillary expansion using tooth-borne appliance on the formation of stresses and displacement patterns in the facial skeleton-a study using finite element analysis (FEA). Applied Sciences. 2020;10:8261.

16. Du W, Bhojwani A, Hu JK. FACEts of mechanical regulation in the morphogenesis of craniofacial structures. Int J Oral Sci. 2021;13:4.

17. Tian T, Zhang T, Lin Y, Cai X. Vascularization in craniofacial bone tissue engineering. J Dent Res. 2018;97:969-76.

18. Libby J, Marghoub A, Johnson D, Khonsari RH, Fagan MJ, Moazen M. Modelling human skull growth: a validated computational model. J R Soc Interface. 2017;14:20170202.

19. Benulič Č, Canton G, Rasio N, Murena L, Kristan A. Mechanobiology of indirect bone fracture healing under conditions of relative stability: a narrative review for the practicing clinician. Acta Biomed. 2022;92:e2021582.

20. Rolvien T, Barbeck M, Wenisch S, Amling M, Krause M. Cellular mechanisms responsible for success and failure of bone substitute materials. Int J Mol Sci. 2018;19:2893.

21. Sheen JR, Mabrouk A, Garla VV. Fracture healing overview. Treasure Island (FL): StatPearls Publishing; 2025.

22. Glatt V, Evans CH, Tetsworth K. A concert between biology and biomechanics: the influence of the mechanical environment on bone healing. Front Physiol. 2016;7:678.

23. Anani T, Castillo AB. Mechanically-regulated bone repair. Bone. 2022;154:116223.

24. Ivanjac F, Konstantinović VS, Lazić V, Dordević I, Ihde S. Assessment of stability of craniofacial implants by resonant frequency analysis. J Craniofac Surg. 2016;27:e185-9.

25. Oliveira CS, Leeuwenburgh S, Mano JF. New insights into the biomimetic design and biomedical applications of bioengineered bone microenvironments. APL Bioeng. 2021;5:041507.

26. Griffin KS, Davis KM, Mckinley TO, et al. Evolution of bone grafting: bone grafts and tissue engineering strategies for vascularized bone regeneration. Clinic Rev Bone Miner Metab. 2015;13:232-44.

27. Cheng K, Gao S, Mei Y, et al. The bone nonunion microenvironment: a place where osteogenesis struggles with osteoclastic capacity. Heliyon. 2024;10:e31314.

28. Thomas MV, Puleo DA. Infection, inflammation, and bone regeneration: a paradoxical relationship. J Dent Res. 2011;90:1052-61.

29. Liu H, Li D, Zhang Y, Li M. Inflammation, mesenchymal stem cells and bone regeneration. Histochem Cell Biol. 2018;149:393-404.

30. Zhang Q, Guo S, Li Y, Li Z, Wang D, Zhang K. Analysis of risk indicators for implant failure in patients with chronic periodontitis. BMC Oral Health. 2024;24:1051.

31. Salthouse D, Novakovic K, Hilkens CMU, Ferreira AM. Interplay between biomaterials and the immune system: challenges and opportunities in regenerative medicine. Acta Biomater. 2023;155:1-18.

32. Cornell RS, Meyr AJ, Steinberg JS, Attinger CE. Débridement of the noninfected wound. J Vasc Surg. 2010;52:31S-6.

33. Mata R, Yao Y, Cao W, et al. The dynamic inflammatory tissue microenvironment: signality and disease therapy by biomaterials. Research. 2021;2021:4189516.

34. Cheng A, Vantucci CE, Krishnan L, et al. Early systemic immune biomarkers predict bone regeneration after trauma. Proc Natl Acad Sci U S A. 2021;118:e2017889118.

35. Zhang H, Wang R, Wang G, et al. Single-cell RNA sequencing reveals B cells are important regulators in fracture healing. Front Endocrinol. 2021;12:666140.

36. Hankenson KD, Dishowitz M, Gray C, Schenker M. Angiogenesis in bone regeneration. Injury. 2011;42:556-61.

37. Bai L, Zhou D, Li G, Liu J, Chen X, Su J. Engineering bone/cartilage organoids: strategy, progress, and application. Bone Res. 2024;12:66.

38. Bahney CS, Hu DP, Miclau T 3rd, Marcucio RS. The multifaceted role of the vasculature in endochondral fracture repair. Front Endocrinol. 2015;6:4.

39. Bixel MG, Sivaraj KK, Timmen M, et al. Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration. Nat Commun. 2024;15:4575.

40. Nadine S, Fernandes IJ, Correia CR, Mano JF. Close-to-native bone repair via tissue-engineered endochondral ossification approaches. iScience. 2022;25:105370.

41. Maggio N, Banfi A. The osteo-angiogenic signaling crosstalk for bone regeneration: harmony out of complexity. Curr Opin Biotechnol. 2022;76:102750.

42. Liu X, Zhang P, Gu Y, Guo Q, Liu Y. Type H vessels: functions in bone development and diseases. Front Cell Dev Biol. 2023;11:1236545.

43. O’Connor C, Brady E, Zheng Y, Moore E, Stevens KR. Engineering the multiscale complexity of vascular networks. Nat Rev Mater. 2022;7:702-16.

44. Chen M, Li Y, Huang X, et al. Skeleton-vasculature chain reaction: a novel insight into the mystery of homeostasis. Bone Res. 2021;9:21.

45. Stegen S, Carmeliet G. The skeletal vascular system - breathing life into bone tissue. Bone. 2018;115:50-8.

46. Hao S, Wang M, Yin Z, Jing Y, Bai L, Su J. Microenvironment-targeted strategy steers advanced bone regeneration. Mater Today Bio. 2023;22:100741.

47. Nadine S, Correia CR, Mano JF. Engineering immunomodulatory hydrogels and cell-laden systems towards bone regeneration. Biomater Adv. 2022;140:213058.

48. Rowe P, Koller A, Sharma S. Physiology, bone remodeling. Treasure Island (FL): StatPearls Publishing; 2025.

49. Zidrou C, Kapetanou A, Rizou S. The effect of drugs on implant osseointegration- a narrative review. Injury. 2023;54:110888.

50. Gittens RA, Olivares-Navarrete R, Schwartz Z, Boyan BD. Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants. Acta Biomater. 2014;10:3363-71.

51. Frost HM. A synchronous group of mammallian cells whose in vivo behavior can be studied. Henry Ford Hosp Med Bull. 1965;13:161-72.

52. Delaisse JM, Andersen TL, Kristensen HB, Jensen PR, Andreasen CM, Søe K. Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone. 2020;141:115628.

53. Bolamperti S, Villa I, Rubinacci A. Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res. 2022;10:48.

54. Julien A, Kanagalingam A, Martínez-Sarrà E, et al. Direct contribution of skeletal muscle mesenchymal progenitors to bone repair. Nat Commun. 2021;12:2860.

55. Wei S, Ma JX, Xu L, Gu XS, Ma XL. Biodegradable materials for bone defect repair. Mil Med Res. 2020;7:54.

56. Henkel J, Woodruff MA, Epari DR, et al. Bone regeneration based on tissue engineering conceptions - a 21st century perspective. Bone Res. 2013;1:216-48.

57. Ercal P, Pekozer GG. A current overview of scaffold-based bone regeneration strategies with dental stem cells. Adv Exp Med Biol. 2020;1288:61-85.

58. Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1:245-60.

59. Tajvar S, Hadjizadeh A, Samandari SS. Scaffold degradation in bone tissue engineering: an overview. Int Biodeterior Biodegrad. 2023;180:105599.

60. O’Keefe RJ, Mao J. Bone tissue engineering and regeneration: from discovery to the clinic--an overview. Tissue Eng Part B Rev. 2011;17:389-92.

61. McGovern JA, Griffin M, Hutmacher DW. Animal models for bone tissue engineering and modelling disease. Dis Model Mech. 2018;11:dmm033084.

62. Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials. 2018;185:240-75.

63. Baptista LS, Porrini C, Kronemberger GS, Kelly DJ, Perrault CM. 3D organ-on-a-chip: the convergence of microphysiological systems and organoids. Front Cell Dev Biol. 2022;10:1043117.

64. Lam EHY, Yu F, Zhu S, Wang Z. 3D bioprinting for next-generation personalized medicine. Int J Mol Sci. 2023;24:6357.

65. Yang S, Hu H, Kung H, et al. Organoids: the current status and biomedical applications. MedComm. 2023;4:e274.

66. Genova T, Roato I, Carossa M, Motta C, Cavagnetto D, Mussano F. Advances on bone substitutes through 3D bioprinting. Int J Mol Sci. 2020;21:7012.

67. Chen FM, Liu X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 2016;53:86-168.

68. Schot M, Araújo-Gomes N, van Loo B, Kamperman T, Leijten J. Scalable fabrication, compartmentalization and applications of living microtissues. Bioact Mater. 2023;19:392-405.

69. Smith IO, Liu XH, Smith LA, Ma PX. Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:226-36.

70. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40:363-408.

71. Hixon KR, Eberlin CT, Pendyala M, Alarcon de la Lastra A, Sell SA. Scaffolds for use in craniofacial bone regeneration. Methods Mol Biol. 2022;2403:223-34.

72. Zhao X, Li N, Zhang Z, et al. Beyond hype: unveiling the real challenges in clinical translation of 3D printed bone scaffolds and the fresh prospects of bioprinted organoids. J Nanobiotechnology. 2024;22:500.

73. Zhao X, Hu DA, Wu D, et al. Applications of biocompatible scaffold materials in stem cell-based cartilage tissue engineering. Front Bioeng Biotechnol. 2021;9:603444.

74. Breeland G, Sinkler MA, Menezes RG. Embryology, bone ossification. Treasure Island (FL): StatPearls Publishing; 2025.

75. Barlian A, Vanya K. Nanotopography in directing osteogenic differentiation of mesenchymal stem cells: potency and future perspective. Future Sci OA. 2022;8:FSO765.

76. Hu B, Wu T, Zhao Y, Xu G, Shen R, Chen G. Physiological signatures of dual embryonic origins in mouse skull vault. Cell Physiol Biochem. 2017;43:2525-34.

77. Ichikawa Y, Watahiki J, Nampo T, et al. Differences in the developmental origins of the periosteum may influence bone healing. J Periodontal Res. 2015;50:468-78.

78. Wu T, Chen G, Tian F, Liu HX. Contribution of cranial neural crest cells to mouse skull development. Int J Dev Biol. 2017;61:495-503.

79. Vandeputte T, Bigorre M, Tramini P, Captier G. Comparison between combined cortical and cancellous bone graft and cancellous bone graft in alveolar cleft: retrospective study of complications during the first six months post-surgery. J Craniomaxillofac Surg. 2020;48:38-42.

80. Sheikh Z, Sima C, Glogauer M. Bone replacement materials and techniques used for achieving vertical alveolar bone augmentation. Materials. 2015;8:2953-93.

81. Kirchner JE, Smith JL, Powell BJ, Waltz TJ, Proctor EK. Getting a clinical innovation into practice: an introduction to implementation strategies. Psychiatry Res. 2020;283:112467.

82. Sallent I, Capella-Monsonís H, Procter P, et al. The few who made it: commercially and clinically successful innovative bone grafts. Front Bioeng Biotechnol. 2020;8:952.

83. de Carvalho ABG, Rahimnejad M, Oliveira RLMS, et al. Personalized bioceramic grafts for craniomaxillofacial bone regeneration. Int J Oral Sci. 2024;16:62.

84. Maciel PP, Pessôa JAM, Medeiros ELGD, et al. Use of strontium doping glass-ceramic material for bone regeneration in critical defect: in vitro and in vivo analyses. Ceram Int. 2020;46:24940-54.

85. Lodoso-Torrecilla I, van den Beucken JJJP, Jansen JA. Calcium phosphate cements: optimization toward biodegradability. Acta Biomater. 2021;119:1-12.

86. Sheikh Z, Abdallah MN, Hanafi AA, Misbahuddin S, Rashid H, Glogauer M. Mechanisms of in vivo degradation and resorption of calcium phosphate based biomaterials. Materials. 2015;8:7913-25.

87. Chng HK, Islam I, Yap AU, Tong YW, Koh ET. Properties of a new root-end filling material. J Endod. 2005;31:665-8.

88. Shuai C, Guo W, Gao C, et al. Calcium silicate improved bioactivity and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds. Polymers. 2017;9:175.

89. Lin K, Liu Y, Huang H, Chen L, Wang Z, Chang J. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model. J Mater Sci Mater Med. 2015;26:197.

90. Qi X, Wang H, Zhang Y, et al. Mesoporous bioactive glass-coated 3D printed borosilicate bioactive glass scaffolds for improving repair of bone defects. Int J Biol Sci. 2018;14:471-84.

91. Rahaman MN, Day DE, Bal BS, et al. Bioactive glass in tissue engineering. Acta Biomater. 2011;7:2355-73.

92. Sanz-Herrera JA, Boccaccini AR. Modelling bioactivity and degradation of bioactive glass based tissue engineering scaffolds. Int J Solids Struct. 2011;48:257-68.

93. Lai W, Garino J, Ducheyne P. Silicon excretion from bioactive glass implanted in rabbit bone. Biomaterials. 2002;23:213-7.

94. Dewey MJ, Harley BAC. Biomaterial design strategies to address obstacles in craniomaxillofacial bone repair. RSC Adv. 2021;11:17809-27.

95. Castañeda-Rodríguez S, González-Torres M, Ribas-Aparicio RM, et al. Recent advances in modified poly (lactic acid) as tissue engineering materials. J Biol Eng. 2023;17:21.

96. da Silva D, Kaduri M, Poley M, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J. 2018;340:9-14.

97. Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Natural and synthetic polymers for bone scaffolds optimization. Polymers. 2020;12:905.

98. Dwivedi R, Kumar S, Pandey R, et al. Polycaprolactone as biomaterial for bone scaffolds: review of literature. J Oral Biol Craniofac Res. 2020;10:381-8.

99. Zhang D, George OJ, Petersen KM, Jimenez-Vergara AC, Hahn MS, Grunlan MA. A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects. Acta Biomater. 2014;10:4597-605.

100. Bartnikowski M, Dargaville TR, Ivanovski S, Hutmacher DW. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Progress in Polymer Science. 2019;96:1-20.

101. Göktürk E, Erdal H. Biomedical applications of polyglycolic acid (PGA). Sak Univ J Sci. 2017;21:1237-44.

102. Wu DT, Munguia-Lopez JG, Cho YW, et al. Polymeric scaffolds for dental, oral, and craniofacial regenerative medicine. Molecules. 2021;26:7043.

103. Wu E, Huang L, Shen Y, et al. Application of gelatin-based composites in bone tissue engineering. Heliyon. 2024;10:e36258.

104. Manoukian OS, Sardashti N, Stedman T, et al. Biomaterials for tissue engineering and regenerative medicine. In: Roger N, Editor. Encyclopedia of biomedical engineering. Oxford: Elsevier; 2019. pp. 462-82.

105. Wang JZ, You ML, Ding ZQ, Ye WB. A review of emerging bone tissue engineering via PEG conjugated biodegradable amphiphilic copolymers. Mater Sci Eng C Mater Biol Appl. 2019;97:1021-35.

106. Reid B, Gibson M, Singh A, et al. PEG hydrogel degradation and the role of the surrounding tissue environment. J Tissue Eng Regen Med. 2015;9:315-8.

107. Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials. 2019;12:568.

108. Pourhajrezaei S, Abbas Z, Khalili MA, et al. Bioactive polymers: a comprehensive review on bone grafting biomaterials. Int J Biol Macromol. 2024;278:134615.

109. Thrivikraman G, Athirasala A, Twohig C, Boda SK, Bertassoni LE. Biomaterials for craniofacial bone regeneration. Dent Clin North Am. 2017;61:835-56.

110. Kolk A, Handschel J, Drescher W, et al. Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials. J Craniomaxillofac Surg. 2012;40:706-18.

111. Kinney RC, Ziran BH, Hirshorn K, Schlatterer D, Ganey T. Demineralized bone matrix for fracture healing: fact or fiction? J Orthop Trauma. 2010;24:S52-5.

112. Ren J, Li Z, Liu W, et al. Demineralized bone matrix for repair and regeneration of maxillofacial defects: a narrative review. J Dent. 2024;143:104899.

113. Rashid AB, Showva N, Hoque ME. Gelatin-based scaffolds: an intuitive support structure for regenerative therapy. Curr Opin Biomed Eng. 2023;26:100452.

114. Lukin I, Erezuma I, Maeso L, et al. Progress in gelatin as biomaterial for tissue engineering. Pharmaceutics. 2022;14:1177.

115. Kozusko SD, Riccio C, Goulart M, Bumgardner J, Jing XL, Konofaos P. Chitosan as a bone scaffold biomaterial. J Craniofac Surg. 2018;29:1788-93.

116. Costa-Pinto AR, Reis RL, Neves NM. Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng Part B Rev. 2011;17:331-47.

117. Muzzarelli R, Tarsi R, Filippini O, Giovanetti E, Biagini G, Varaldo PE. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob Agents Chemother. 1990;34:2019-23.

118. Signorini L, Marenzi G, Facente A, et al. Critical overview on pure chitosan-based scaffolds for bone tissue engineering: clinical insights in dentistry. Int J Med Sci. 2023;20:1527-34.

119. Kowalczewski CJ, Saul JM. Biomaterials for the delivery of growth factors and other therapeutic agents in tissue engineering approaches to bone regeneration. Front Pharmacol. 2018;9:513.

120. Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65:457-70.

121. Esposito M, Grusovin MG, Papanikolaou N, Coulthard P, Worthington HV. Enamel matrix derivative (Emdogain®) for periodontal tissue regeneration in intrabony defects. Cochrane Database Syst Rev. 2009;2009:CD003875.

122. Garimella A, Ghosh SB, Bandyopadhyay-Ghosh S. Biomaterials for bone tissue engineering: achievements to date and future directions. Biomed Mater. 2024;20:012001.

123. De Santis D, Umberto L, Dario D, et al. Custom bone regeneration (CBR): an alternative method of bone augmentation-a case series study. J Clin Med. 2022;11:4739.

124. S AD, P SPA, Naveen J, Khan T, Khahro SH. Advancement in biomedical implant materials-a mini review. Front Bioeng Biotechnol. 2024;12:1400918.

125. Luhr HG. A micro-system for cranio-maxillofacial skeletal fixation. Preliminary report. J Craniomaxillofac Surg. 1988;16:312-4.

126. Luhr HG. Vitallium Luhr systems for reconstructive surgery of the facial skeleton. Otolaryngol Clin North Am. 1987;20:573-606.

127. Flores Fraile J, López-Valverde N, García de Castro Andews A, et al. Safety and efficacy of a new synthetic material based on monetite, silica gel, PS-wallastonite, and a hydroxyapatite calcium deficient: a randomized comparative clinic trial. Medicina. 2020;56:46.

128. Xia D, Yang F, Zheng Y, Liu Y, Zhou Y. Research status of biodegradable metals designed for oral and maxillofacial applications: a review. Bioact Mater. 2021;6:4186-208.

129. Shuai C, Li S, Peng S, Feng P, Lai Y, Gao C. Biodegradable metallic bone implants. Mater Chem Front. 2019;3:544-62.

130. Vujović S, Desnica J, Stanišić D, Ognjanović I, Stevanovic M, Rosic G. Applications of biodegradable magnesium-based materials in reconstructive oral and maxillofacial surgery: a review. Molecules. 2022;27:5529.

131. Schendel SA, Peauroi J. Magnesium-based bone cement and bone void filler: preliminary experimental studies. J Craniofac Surg. 2009;20:461-4.

132. Diao J, OuYang J, Deng T, et al. 3D-plotted beta-tricalcium phosphate scaffolds with smaller pore sizes improve in vivo bone regeneration and biomechanical properties in a critical-sized calvarial defect rat model. Adv Healthc Mater. 2018;7:e1800441.

133. Qin H, Wei Y, Han J, et al. 3D printed bioceramic scaffolds: adjusting pore dimension is beneficial for mandibular bone defects repair. J Tissue Eng Regen Med. 2022;16:409-21.

134. Sow WT, Wang Y, Chen L, et al. Freeze-casted keratin matrix as an organic binder to integrate hydroxyapatite and BMP2 for enhanced cranial bone regeneration. Adv Healthc Mater. 2023;12:e2201886.

135. Gwon Y, Park S, Kim W, Han T, Kim H, Kim J. Radially patterned transplantable biodegradable scaffolds as topographically defined contact guidance platforms for accelerating bone regeneration. J Biol Eng. 2021;15:12.

136. Wang X, Ji L, Wang J, Liu C. Matrix stiffness regulates osteoclast fate through integrin-dependent mechanotransduction. Bioact Mater. 2023;27:138-53.

137. Qiao W, Wong KHM, Shen J, et al. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration. Nat Commun. 2021;12:2885.

138. Bakshi R, Hokugo A, Khalil D, et al. A chemotactic functional scaffold with VEGF-releasing peptide amphiphiles facilitates bone regeneration by BMP-2 in a large-scale rodent cranial defect model. Plast Reconstr Surg. 2021;147:386-97.

139. Daculsi G, Fellah B, Miramond T, Durand M. Osteoconduction, osteogenicity, osteoinduction, what are the fundamental properties for a smart bone substitutes. IRBM. 2013;34:346-8.

140. Lopez CD, Coelho PG, Witek L, et al. Regeneration of a pediatric alveolar cleft model using three-dimensionally printed bioceramic scaffolds and osteogenic agents: comparison of dipyridamole and rhBMP-2. Plast Reconstr Surg. 2019;144:358-70.

141. Lee JS, Park TH, Ryu JY, et al. Osteogenesis of 3D-printed PCL/TCP/bdECM scaffold using adipose-derived stem cells aggregates; an experimental study in the canine mandible. Int J Mol Sci. 2021;22:5409.

142. Remy MT, Akkouch A, He L, et al. Rat calvarial bone regeneration by 3D-printed β-tricalcium phosphate incorporating microRNA-200c. ACS Biomater Sci Eng. 2021;7:4521-34.

143. Karyagina A, Orlova P, Poponova M, et al. Hybrid implants based on calcium-magnesium silicate ceramics diopside as a carrier of recombinant BMP-2 and demineralized bone matrix as a scaffold: dynamics of reparative osteogenesis in a mouse craniotomy model. Biochemistry. 2022;87:1277-91.

144. Pal P, Tucci MA, Fan LW, et al. Functionalized collagen/elastin-like polypeptide hydrogels for craniofacial bone regeneration. Adv Healthc Mater. 2023;12:e2202477.

145. Sheikh Z, Nayak VV, Daood U, et al. Three-dimensional printing methods for bioceramic-based scaffold fabrication for craniomaxillofacial bone tissue engineering. J Funct Biomater. 2024;15:60.

146. Yamamuro T. Bioceramics. In: Poitout DG, Editor. Biomechanics and biomaterials in orthopedics. London: Springer London; 2004. pp. 22-33.

147. Lowe B, Hardy JG, Walsh LJ. Optimizing nanohydroxyapatite nanocomposites for bone tissue engineering. ACS Omega. 2020;5:1-9.

148. Sulaiman SB, Keong TK, Cheng CH, Saim AB, Idrus RBH. Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone. Indian J Med Res. 2013;137:1093-101.

149. Lin K, Sheikh R, Romanazzo S, Roohani I. 3D printing of bioceramic scaffolds-barriers to the clinical translation: from promise to reality, and future perspectives. Materials. 2019;12:2660.

150. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8:114-24.

151. Elshazly N, Nasr FE, Hamdy A, Saied S, Elshazly M. Advances in clinical applications of bioceramics in the new regenerative medicine era. World J Clin Cases. 2024;12:1863-9.

152. Prabha RD, Kraft DCE, Harkness L, et al. Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration. J Tissue Eng Regen Med. 2018;12:e1537-48.

153. Tavakoli M, Salehi H, Emadi R, et al. 3D printed polylactic acid-based nanocomposite scaffold stuffed with microporous simvastatin-loaded polyelectrolyte for craniofacial reconstruction. Int J Biol Macromol. 2024;258:128917.

154. Zhang Y, Jian Y, Jiang X, et al. Stepwise degradable PGA-SF core-shell electrospinning scaffold with superior tenacity in wetting regime for promoting bone regeneration. Mater Today Bio. 2024;26:101023.

155. Zheng W, Zhu Z, Hong J, et al. Incorporation of small extracellular vesicles in PEG/HA-Bio-Oss hydrogel composite scaffold for bone regeneration. Biomed Mater. 2024;19:065014.

156. Farjaminejad S, Farjaminejad R, Hasani M, et al. Advances and challenges in polymer-based scaffolds for bone tissue engineering: a path towards personalized regenerative medicine. Polymers. 2024;16:3303.

157. Karp JM, Shoichet MS, Davies JE. Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro. J Biomed Mater Res A. 2003;64:388-96.

158. Yao Q, Cosme JG, Xu T, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials. 2017;115:115-27.

159. Martina M, Hutmacher DW. Biodegradable polymers applied in tissue engineering research: a review. Polym Int. 2007;56:145-57.

160. Teoh SH, Goh BT, Lim J. Three-dimensional printed polycaprolactone scaffolds for bone regeneration success and future perspective. Tissue Eng Part A. 2019;25:931-5.

161. Yang M, Ng HJH, Nga VD, Chou N, Yeo TT. Cranial reconstruction using a polycaprolactone implant after burr hole trephination. J 3D Print Med. 2020;4:9-16.

162. Teo L, Teoh SH, Liu Y, et al. A novel bioresorbable implant for repair of orbital floor fractures. Orbit. 2015;34:192-200.

163. Park H, Choi JW, Jeong WS. Clinical application of three-dimensional printing of polycaprolactone/beta-tricalcium phosphate implants for cranial reconstruction. J Craniofac Surg. 2022;33:1394-9.

164. Kim DH, Yun WS, Shim JH, et al. Clinical application of 3-dimensional printing technology for patients with nasal septal deformities: a multicenter study. JAMA Otolaryngol Head Neck Surg. 2018;144:1145-52.

165. Schuckert KH, Jopp S, Teoh SH. Mandibular defect reconstruction using three-dimensional polycaprolactone scaffold in combination with platelet-rich plasma and recombinant human bone morphogenetic protein-2: de novo synthesis of bone in a single case. Tissue Eng Part A. 2009;15:493-9.

166. Kirmanidou Y, Chatzinikolaidou M, Michalakis K, Tsouknidas A. Clinical translation of polycaprolactone-based tissue engineering scaffolds, fabricated via additive manufacturing: a review of their craniofacial applications. Biomater Adv. 2024;162:213902.

167. Liu H, Slamovich EB, Webster TJ. Less harmful acidic degradation of poly(lacticco-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. Int J Nanomedicine. 2006;1:541-5.

168. Song X, Li X, Wang F, et al. Bioinspired protein/peptide loaded 3D printed PLGA scaffold promotes bone regeneration. Front Bioeng Biotechnol. 2022;10:832727.

169. Kazemi N, Hassanzadeh-Tabrizi SA, Koupaei N, Ghomi H, Masaeli E. Highly porous sildenafil loaded polylactic acid/polyvinylpyrrolidone based 3D printed scaffold containing forsterite nanoparticles for craniofacial reconstruction. Int J Biol Macromol. 2024;282:137255.

170. Nosrat A, Kolahdouzan A, Khatibi AH, et al. Clinical, radiographic, and histologic outcome of regenerative endodontic treatment in human teeth using a novel collagen-hydroxyapatite scaffold. J Endod. 2019;45:136-43.

171. Jiang Y, Zhou D, Yang B. 3D bioprinted GelMA/GO composite induces osteoblastic differentiation. J Biomater Appl. 2022;37:527-37.

172. Rodríguez-Méndez I, Fernández-Gutiérrez M, Rodríguez-Navarrete A, et al. Bioactive Sr(II)/chitosan/poly(ε-caprolactone) scaffolds for craniofacial tissue regeneration. In vitro and in vivo behavior. Polymers. 2018;10:279.

173. Mao Z, Bi X, Yu C, et al. Mechanically robust and personalized silk fibroin-magnesium composite scaffolds with water-responsive shape-memory for irregular bone regeneration. Nat Commun. 2024;15:4160.

174. Guo L, Liang Z, Yang L, et al. The role of natural polymers in bone tissue engineering. J Control Release. 2021;338:571-82.

175. Thrivikraman G, Athirasala A, Gordon R, et al. Rapid fabrication of vascularized and innervated cell-laden bone models with biomimetic intrafibrillar collagen mineralization. Nat Commun. 2019;10:3520.

176. Zhang H, Yang L, Yang XG, et al. Demineralized bone matrix carriers and their clinical applications: an overview. Orthop Surg. 2019;11:725-37.

177. Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO. Demineralized bone matrix in bone repair: history and use. Adv Drug Deliv Re. 2012;64:1063-77.

178. Wang Y, Rudym DD, Walsh A, et al. In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials. 2008;29:3415-28.

179. Lueckgen A, Garske DS, Ellinghaus A, Mooney DJ, Duda GN, Cipitria A. Enzymatically-degradable alginate hydrogels promote cell spreading and in vivo tissue infiltration. Biomaterials. 2019;217:119294.

180. Filippi M, Born G, Chaaban M, Scherberich A. Natural polymeric scaffolds in bone regeneration. Front Bioeng Biotechnol. 2020;8:474.

181. Charnley J. Anchorage of the femoral head prosthesis to the shaft of the femur. J Bone Joint Surg Br. 1960;42-B:28-30.

182. Rosinski CL, Patel S, Geever B, et al. A retrospective comparative analysis of titanium mesh and custom implants for cranioplasty. Neurosurgery. 2020;86:E15-22.

183. Jeng MD, Chiang CP. Autogenous bone grafts and titanium mesh-guided alveolar ridge augmentation for dental implantation. J Dent Sci. 2020;15:243-8.

184. Zhao Z, Shen S, Li M, Shen G, Ding G, Yu H. Three-dimensional printed titanium mesh combined with iliac cancellous bone in the reconstruction of mandibular defects secondary to ameloblastoma resection. BMC Oral Health. 2023;23:681.

185. Elias CN, Lima JHC, Valiev R, Meyers MA. Biomedical applications of titanium and its alloys. JOM. 2008;60:46-9.

186. Oliver JD, Banuelos J, Abu-Ghname A, Vyas KS, Sharaf B. Alloplastic cranioplasty reconstruction: a systematic review comparing outcomes with titanium mesh, polymethyl methacrylate, polyether ether ketone, and norian implants in 3591 adult patients. Ann Plast Surg. 2019;82:S289-94.

187. Glenske K, Donkiewicz P, Köwitsch A, et al. Applications of metals for bone regeneration. Int J Mol Sci. 2018;19:826.

188. Yu XY, Zhu WQ, Chen W, Chen WQ, Zhang SM, Qiu J. Osteoclast-mediated biocorrosion of pure titanium in an inflammatory microenvironment. Mater Sci Eng C Mater Biol Appl. 2021;119:111610.

189. Leonhardt H, Franke A, McLeod NMH, Lauer G, Nowak A. Fixation of fractures of the condylar head of the mandible with a new magnesium-alloy biodegradable cannulated headless bone screw. Br J Oral Maxillofac Surg. 2017;55:623-5.

190. Leonhardt H, Ziegler A, Lauer G, Franke A. Osteosynthesis of the mandibular condyle with magnesium-based biodegradable headless compression screws show good clinical results during a 1-year follow-up period. J Oral Maxillofac Surg. 2021;79:637-43.

191. Luhr HG. Indications for use of a microsystem for internal fixation in craniofacial surgery. J Craniofac Surg. 1990;1:35-52.

192. Deshoju AK, Chandra RV, Reddy AA, Reddy BH, Nagarajan S, Naveen A. Efficacy of a novel Zn-substituted monetite-based scaffold in the treatment of periodontal osseous defects. J Int Acad Periodontol. 2017;19:2-9.

193. Asri RIM, Harun WSW, Samykano M, et al. Corrosion and surface modification on biocompatible metals: a review. Mater Sci Eng C Mater Biol Appl. 2017;77:1261-74.

194. Fan L, Chen S, Yang M, Liu Y, Liu J. Metallic materials for bone repair. Adv Healthc Mater. 2024;13:e2302132.

195. Zhang C, Zhou Z, Liu N, et al. Osteogenic differentiation of 3D-printed porous tantalum with nano-topographic modification for repairing craniofacial bone defects. Front Bioeng Biotechnol. 2023;11:1258030.

196. Yang J, Jin X, Gao H, et al. Additive manufacturing of trabecular tantalum scaffolds by laser powder bed fusion: mechanical property evaluation and porous structure characterization. Mater Charact. 2020;170:110694.

197. Luo C, Wang C, Wu X, et al. Influence of porous tantalum scaffold pore size on osteogenesis and osteointegration: a comprehensive study based on 3D-printing technology. Mater Sci Eng C Mater Biol Appl. 2021;129:112382.

198. Muresan LM. Nanocomposite coatings for anti-corrosion properties of metallic substrates. Materials. 2023;16:5092.

199. An HW, Lee J, Park JW. Surface characteristics and in vitro biocompatibility of surface-modified titanium foils as a regenerative barrier membrane for guided bone regeneration. J Biomater Appl. 2023;37:1228-42.

200. Ali M, He Y, Chang ASN, et al. Osteoimmune-modulating and BMP-2-eluting anodised 3D printed titanium for accelerated bone regeneration. J Mater Chem B. 2023;12:97-111.

201. Martín-Del-Campo M, Rosales-Ibañez R, Rojo L. Biomaterials for cleft lip and palate regeneration. Int J Mol Sci. 2019;20:2176.

202. Kazimierczak P, Przekora A. Osteoconductive and osteoinductive surface modifications of biomaterials for bone regeneration: a concise review. Coatings. 2020;10:971.

203. Prasopthum A, Cooper M, Shakesheff KM, Yang J. Three-dimensional printed scaffolds with controlled micro-/nanoporous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells. ACS Appl Mater Interfaces. 2019;11:18896-906.

204. Hutmacher DW, Tandon B, Dalton PD. Chapter 11 - scaffold design and fabrication. In: De Boer J, Blitterswijk CAV, Uquillas JA, Malik N, Editors. Tissue engineering (Third Edition). Academic Press; 2023. pp. 355-85.

205. Harikrishnan P, Islam H, Sivasamy A. Biocompatibility studies of nanoengineered polycaprolactone and nanohydroxyapatite scaffold for craniomaxillofacial bone regeneration. J Craniofac Surg. 2019;30:265-9.

206. Wang C, Sang W, Chen Y, Song D. [Electrospun PLGA scaffold loaded with osteogenic growth peptide accelerates cranial bone repair in rats]. Nan Fang Yi Ke Da Xue Xue Bao. 2021;41:1183-90. (in Chinese).

207. Lim DJ. Bone mineralization in electrospun-based bone tissue engineering. Polymers. 2022;14:2123.

208. Fu N, Meng Z, Jiao T, et al. P34HB electrospun fibres promote bone regeneration in vivo. Cell Prolif. 2019;52:e12601.

209. Guler Z, Silva JC, Sezai Sarac A. RGD functionalized poly( ε -caprolactone)/poly(m-anthranilic acid) electrospun nanofibers as high-performing scaffolds for bone tissue engineering RGD functionalized PCL/P3ANA nanofibers. Int J Polym Mater Polym Biomater. 2017;66:139-48.

210. Maji S, Lee H. Engineering hydrogels for the development of three-dimensional in vitro models. Int J Mol Sci. 2022;23:2662.

211. Yang F, Williams CG, Wang DA, Lee H, Manson PN, Elisseeff J. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials. 2005;26:5991-8.

212. Kumar VB, Tiwari OS, Finkelstein-Zuta G, Rencus-Lazar S, Gazit E. Design of functional RGD peptide-based biomaterials for tissue engineering. Pharmaceutics. 2023;15:345.

213. Lee DK, Ki MR, Kim EH, et al. Biosilicated collagen/β-tricalcium phosphate composites as a BMP-2-delivering bone-graft substitute for accelerated craniofacial bone regeneration. Biomater Res. 2021;25:13.

214. Deepika M, G JP, Pavan B, Bhairavi K, R AD, Aishwarya R. Evaluation of PRF and PLA-PGA membrane along with hydroxyapatite crystal collagen fibers bone graft in the treatment of infrabony defects. J Contemp Dent Pract. 2023;24:442-8.

215. Wang X, Yu Y, Ji L, Geng Z, Wang J, Liu C. Calcium phosphate-based materials regulate osteoclast-mediated osseointegration. Bioact Mater. 2021;6:4517-30.

216. Wu T, Shi H, Liang Y, Lu T, Lin Z, Ye J. Improving osteogenesis of calcium phosphate bone cement by incorporating with manganese doped β-tricalcium phosphate. Mater Sci Eng C Mater Biol Appl. 2020;109:110481.

217. Wang Z, Zheng B, Yu X, et al. Promoting neurovascularized bone regeneration with a novel 3D printed inorganic-organic magnesium silicate/PLA composite scaffold. Int J Biol Macromol. 2024;277:134185.

218. Kim M, Wang X, Li Y, et al. Personalized composite scaffolds for accelerated cell- and growth factor-free craniofacial bone regeneration. Bioact Mater. 2024;41:427-39.

219. Wang B, Guo Y, Chen X, et al. Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2. Int J Nanomedicine. 2018;13:7395-408.

220. Chen G, Yang L, Lv Y. Cell-free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model. J Biomed Mater Res A. 2016;104:833-41.

221. Tang Z, Li X, Tan Y, Fan H, Zhang X. The material and biological characteristics of osteoinductive calcium phosphate ceramics. Regen Biomater. 2018;5:43-59.

222. Vargas D, Peña D, Whitehead E, et al. Synthesis and osteoinductive properties of nanosized lithium-modified calcium-organic frameworks. Materials. 2025;18:2091.

223. Phadke A, Shih YR, Varghese S. Mineralized synthetic matrices as an instructive microenvironment for osteogenic differentiation of human mesenchymal stem cells. Macromol Biosci. 2012;12:1022-32.

224. Ku JK, Lee KG, Ghim MS, et al. Onlay-graft of 3D printed Kagome-structure PCL scaffold incorporated with rhBMP-2 based on hyaluronic acid hydrogel. Biomed Mater. 2021;16:055004.

225. Babaei M, Ebrahim-Najafabadi N, Mirzadeh M, et al. A comprehensive bench-to-bed look into the application of gamma-sterilized 3D-printed polycaprolactone/hydroxyapatite implants for craniomaxillofacial defects, an in vitro, in vivo, and clinical study. Biomater Adv. 2024;161:213900.

226. Banche-Niclot F, Licini C, Montalbano G, Fiorilli S, Mattioli-Belmonte M, Vitale-Brovarone C. 3D printed scaffold based on type i collagen/PLGA_TGF-β1 nanoparticles mimicking the growth factor footprint of human bone tissue. Polymers. 2022;14:857.

227. Hutchings G, Moncrieff L, Dompe C, et al. Bone regeneration, reconstruction and use of osteogenic cells; from basic knowledge, animal models to clinical trials. J Clin Med. 2020;9:139.

228. Dai Y, Xie Q, Zhang Y, et al. Neoteric semiembedded β-tricalcium phosphate promotes osteogenic differentiation of mesenchymal stem cells under cyclic stretch. ACS Appl Mater Interfaces. 2024;16:8289-300.

229. Yu L, Cai Y, Wang H, et al. Biomimetic bone regeneration using angle-ply collagen membrane-supported cell sheets subjected to mechanical conditioning. Acta Biomater. 2020;112:75-86.

230. Wu P, Shen L, Liu HF, et al. The marriage of immunomodulatory, angiogenic, and osteogenic capabilities in a piezoelectric hydrogel tissue engineering scaffold for military medicine. Mil Med Res. 2023;10:35.

231. Liu H, Shi Y, Zhu Y, et al. Bioinspired piezoelectric periosteum to augment bone regeneration via synergistic immunomodulation and osteogenesis. ACS Appl Mater Interfaces. 2023;15:12273-93.

232. Cui X, Xu L, Shan Y, et al. Piezocatalytically-induced controllable mineralization scaffold with bone-like microenvironment to achieve endogenous bone regeneration. Sci Bull. 2024;69:1895-908.

233. Tang Y, Wu C, Wu Z, Hu L, Zhang W, Zhao K. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration. Sci Rep. 2017;7:43360.

234. Meneghetti DH, Bagne L, de Andrade Pinto SA, et al. Electrical stimulation therapy and rotary jet-spinning scaffold to treat bone defects. Anat Rec. 2023;306:79-91.

235. Wu H, Dong H, Tang Z, et al. Electrical stimulation of piezoelectric BaTiO3 coated Ti6Al4V scaffolds promotes anti-inflammatory polarization of macrophages and bone repair via MAPK/JNK inhibition and OXPHOS activation. Biomaterials. 2023;293:121990.

236. Collignon AM, Castillo-Dali G, Gomez E, et al. Mouse Wnt1-CRE-RosaTomato dental pulp stem cells directly contribute to the calvarial bone regeneration process. Stem Cells. 2019;37:701-11.

237. Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem cells in bone tissue engineering: progress, promises and challenges. Stem Cell Rev Rep. 2024;20:1692-731.

238. Antoni D, Burckel H, Josset E, Noel G. Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci. 2015;16:5517-27.

239. Luo Y. Chapter 19 - three-dimensional scaffolds. In: Lanza R, Langer R, Vacanti JP, Atala A, Editors. Principles of tissue engineering (Fifth Edition). Academic Press; 2020. pp. 343-60.

240. Yun C, Kim SH, Kim KM, et al. Advantages of using 3D spheroid culture systems in toxicological and pharmacological assessment for osteogenesis research. Int J Mol Sci. 2024;25:2512.

241. Kato H, Watanabe K, Saito A, Onodera S, Azuma T, Takano M. Bone regeneration of induced pluripotent stem cells derived from peripheral blood cells in collagen sponge scaffolds. J Appl Oral Sci. 2022;30:e20210491.

242. Jeon OH, Panicker LM, Lu Q, Chae JJ, Feldman RA, Elisseeff JH. Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials. Sci Rep. 2016;6:26761.

243. Gao X, Ruzbarsky JJ, Layne JE, Xiao X, Huard J. Stem cells and bone tissue engineering. Life. 2024;14:287.

244. Ren X, Zhou Q, Foulad D, et al. Osteoprotegerin reduces osteoclast resorption activity without affecting osteogenesis on nanoparticulate mineralized collagen scaffolds. Sci Adv. 2019;5:eaaw4991.

245. Ren X, Zhou Q, Foulad D, et al. Nanoparticulate mineralized collagen glycosaminoglycan materials directly and indirectly inhibit osteoclastogenesis and osteoclast activation. J Tissue Eng Regen Med. 2019;13:823-34.

246. Qin C, Zhang H, Chen L, et al. Cell-laden scaffolds for vascular-innervated bone regeneration. Adv Healthc Mater. 2023;12:e2201923.

247. Chamieh F, Collignon AM, Coyac BR, et al. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells. Sci Rep. 2016;6:38814.

248. Zhang B, Zhang PB, Wang ZL, Lyu ZW, Wu H. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration. J Zhejiang Univ Sci B. 2017;18:963-76.

249. Chen J, Da Y, Yang J, Zhu G, Qin H. Vascularization reconstruction strategies in craniofacial bone regeneration. Coatings. 2024;14:357.

250. Amini AR, Adams DJ, Laurencin CT, Nukavarapu SP. Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration. Tissue Eng Part A. 2012;18:1376-88.

251. Subbiah R, Thrivikraman G, Parthiban SP, et al. Prevascularized hydrogels with mature vascular networks promote the regeneration of critical-size calvarial bone defects in vivo. J Tissue Eng Regen Med. 2021;15:219-31.

252. Hilkens P, Bronckaers A, Ratajczak J, Gervois P, Wolfs E, Lambrichts I. The angiogenic potential of DPSCs and SCAPs in an in vivo model of dental pulp regeneration. Stem Cells Int. 2017;2017:2582080.

253. Liu X, Liu C, Lin Q, Shi T, Liu G. Exosome-loaded hydrogels for craniofacial bone tissue regeneration. Biomed Mater. 2024;19:052002.

254. Liu Y, Zhuang X, Yu S, et al. Exosomes derived from stem cells from apical papilla promote craniofacial soft tissue regeneration by enhancing Cdc42-mediated vascularization. Stem Cell Res Ther. 2021;12:76.

255. García-García A, Martin I. extracellular matrices to modulate the innate immune response and enhance bone healing. Front Immunol. 2019;10:2256.

256. Su N, Villicana C, Barati D, Freeman P, Luo Y, Yang F. Stem cell membrane-coated microribbon scaffolds induce regenerative innate and adaptive immune responses in a critical-size cranial bone defect model. Adv Mater. 2023;35:e2208781.

257. Baht GS, Vi L, Alman BA. The role of the immune cells in fracture healing. Curr Osteoporos Rep. 2018;16:138-45.

258. Schmidt-Bleek K, Schell H, Schulz N, et al. Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell Tissue Res. 2012;347:567-73.

259. Jin SS, He DQ, Luo D, et al. A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to promote endogenous bone regeneration. ACS Nano. 2019;13:6581-95.

260. Chen D, Liang Z, Su Z, et al. Selenium-doped mesoporous bioactive glass regulates macrophage metabolism and polarization by scavenging ROS and promotes bone regeneration in vivo. ACS Appl Mater Interfaces. 2023;15:34378-96.

261. Yang SY, Zhou YN, Yu XG, et al. A xonotlite nanofiber bioactive 3D-printed hydrogel scaffold based on osteo-/angiogenesis and osteoimmune microenvironment remodeling accelerates vascularized bone regeneration. J Nanobiotechnology. 2024;22:59.

262. Liu X, Chen M, Luo J, et al. Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration. Biomaterials. 2021;276:121037.

263. Li D, Li X, Zhang J, Tang Z, Tian A. The immunomodulatory effect of IL-4 accelerates bone substitute material-mediated osteogenesis in aged rats via NLRP3 inflammasome inhibition. Front Immunol. 2023;14:1121549.

264. Shen H, Shi J, Zhi Y, et al. Improved BMP2-CPC-stimulated osteogenesis in vitro and in vivo via modulation of macrophage polarization. Mater Sci Eng C Mater Biol Appl. 2021;118:111471.

265. Patel DK, Dutta SD, Hexiu J, Ganguly K, Lim KT. 3D-printable chitosan/silk fibroin/cellulose nanoparticle scaffolds for bone regeneration via M2 macrophage polarization. Carbohydr Polym. 2022;281:119077.

266. Jiang X, Jian Y, Zhang Y, et al. Dual-mode release of IL-4 and TCP from a PGA-SF core-shell electrospinning scaffold for enhanced bone regeneration through synergistic immunoregulation and osteogenesis. ACS Appl Mater Interfaces. 2024;16:58148-67.

267. Wang Y, Wang J, Gao R, et al. Biomimetic glycopeptide hydrogel coated PCL/nHA scaffold for enhanced cranial bone regeneration via macrophage M2 polarization-induced osteo-immunomodulation. Biomaterials. 2022;285:121538.

268. Schlundt C, El Khassawna T, Serra A, et al. Macrophages in bone fracture healing: their essential role in endochondral ossification. Bone. 2018;106:78-89.

269. Wang H, Yu H, Huang T, Wang B, Xiang L. Hippo-YAP/TAZ signaling in osteogenesis and macrophage polarization: therapeutic implications in bone defect repair. Genes Dis. 2023;10:2528-39.

270. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34:312-9.

271. Jin J, Wang D, Qian H, et al. Precision pore structure optimization of additive manufacturing porous tantalum scaffolds for bone regeneration: a proof-of-concept study. Biomaterials. 2025;313:122756.

272. Kim NH, Yang BE, On SW, et al. Customized three-dimensional printed ceramic bone grafts for osseous defects: a prospective randomized study. Sci Rep. 2024;14:3397.

273. Suh H, Lee D, Lee J, Seol YJ, Lee YM, Koo KT. Comparative evaluation of 3D-printed and conventional implants in vivo: a quantitative microcomputed tomographic and histomorphometric analysis. Sci Rep. 2023;13:21041.

274. Maken P, Rana SS, Gupta A, Kaur H. Challenges for 3D imaging for craniofacial applications. In: Rana SS, Chaudhari PK, Gupta A, Editors. Applications of three-dimensional imaging for craniofacial region. Singapore: Springer Nature Singapore; 2024. pp. 223-40.

275. Miranda F, Choudhari V, Barone S, et al. Interpretable artificial intelligence for classification of alveolar bone defect in patients with cleft lip and palate. Sci Rep. 2023;13:15861.

276. Orhan K, Shamshiev M, Ezhov M, et al. AI-based automatic segmentation of craniomaxillofacial anatomy from CBCT scans for automatic detection of pharyngeal airway evaluations in OSA patients. Sci Rep. 2022;12:11863.

277. Kim WJ, Ryu JH, Kim JW, et al. Bone-targeted lipoplex-loaded three-dimensional bioprinting bilayer scaffold enhanced bone regeneration. Regen Biomater. 2024;11:rbae055.

278. Shao H, Xia P, Zhang T, et al. Modular scaffolds with intelligent visual guidance system for in situ bone tissue repair. Int J Extrem Manuf. 2025;7:025503.

279. Subbiah R, Hipfinger C, Tahayeri A, et al. 3D printing of microgel-loaded modular microcages as instructive scaffolds for tissue engineering. Adv Mater. 2020;32:e2001736.

280. da Costa Sousa MG, de Souza Balbinot G, Subbiah R, et al. In vitro development and optimization of cell-laden injectable bioprinted gelatin methacryloyl (GelMA) microgels mineralized on the nanoscale. Biomater Adv. 2024;159:213805.

281. Franca CM, Athirasala A, Subbiah R, et al. High-throughput bioprinting of geometrically-controlled pre-vascularized injectable microgels for accelerated tissue regeneration. Adv Healthc Mater. 2023;12:e2202840.

282. Kim M, Lin J, Huh JE, et al. Tetraspanin 7 regulates osteoclast function through association with the RANK/αvβ3 integrin complex. J Cell Physiol. 2022;237:846-55.

283. Pan S, Yin Z, Shi C, et al. Multifunctional injectable hydrogel microparticles loaded with miR-29a abundant BMSCs derived exosomes enhanced bone regeneration by regulating osteogenesis and angiogenesis. Small. 2024;20:e2306721.

284. Wang W, Zhu Y, Liu Y, et al. 3D bioprinting of DPSCs with GelMA hydrogel of various concentrations for bone regeneration. Tissue Cell. 2024;88:102418.

285. Iglesias-Mejuto A, García-González CA. 3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021;131:112525.

286. Xu H, Luo H, Chen J, Chen G, Yu X, Ye Z. BMP-2 releasing mineral-coated microparticle-integrated hydrogel system for enhanced bone regeneration. Front Bioeng Biotechnol. 2023;11:1217335.

287. Barik D, Shyamal S, Das K, Jena S, Dash M. Glycoprotein injectable hydrogels promote accelerated bone regeneration through angiogenesis and innervation. Adv Healthc Mater. 2023;12:e2301959.

288. Subbiah R, Lin EY, Athirasala A, et al. Engineering of an osteoinductive and growth factor-free injectable bone-like microgel for bone regeneration. Adv Healthc Mater. 2023;12:e2200976.

289. Guerrero J, Maevskaia E, Ghayor C, Bhattacharya I, Weber FE. Influence of scaffold microarchitecture on angiogenesis and regulation of cell differentiation during the early phase of bone healing: a transcriptomics and histological analysis. Int J Mol Sci. 2023;24:6000.

290. Liu Y, Yang S, Cao L, Zhang X, Wang J, Liu C. Facilitated vascularization and enhanced bone regeneration by manipulation hierarchical pore structure of scaffolds. Mater Sci Eng C Mater Biol Appl. 2020;110:110622.

291. Chen H, Gonnella G, Huang J, Di-Silvio L. Fabrication of 3D bioprinted Bi-phasic scaffold for bone-cartilage interface regeneration. Biomimetics. 2023;8:87.

292. Bedell ML, Wang Z, Hogan KJ, et al. The effect of multi-material architecture on the ex vivo osteochondral integration of bioprinted constructs. Acta Biomater. 2023;155:99-112.

293. Liu Y, Peng L, Li L, et al. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials. 2021;279:121216.

294. Schmidt-Bleek K, Marcucio R, Duda G. Future treatment strategies for delayed bone healing: an osteoimmunologic approach. J Am Acad Orthop Surg. 2016;24:e134-5.

295. Qin L, Yang S, Zhao C, et al. Prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. Bone Res. 2024;12:28.

296. Jiang C, Zhu G, Liu Q. Current application and future perspectives of antimicrobial degradable bone substitutes for chronic osteomyelitis. Front Bioeng Biotechnol. 2024;12:1375266.

297. Kushioka J, Chow SK, Toya M, et al. Bone regeneration in inflammation with aging and cell-based immunomodulatory therapy. Inflamm Regen. 2023;43:29.

298. Zushin PH, Mukherjee S, Wu JC. FDA modernization Act 2.0: transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches. J Clin Invest. 2023;133:e175824.

Plastic and Aesthetic Research
ISSN 2349-6150 (Online)   2347-9264 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/