REFERENCES
1. Tsouknidas A. Advancements in biomaterials for bioengineering and biotechnology. Int J Mol Sci. 2024;25:7840.
2. Smith TD, Nagalla RR, Chen EY, Liu WF. Harnessing macrophage plasticity for tissue regeneration. Adv Drug Deliv Rev. 2017;114:193-205.
3. Söhling N, Ondreka M, Kontradowitz K, Reichel T, Marzi I, Henrich D. Early immune response in foreign body reaction is implant/material specific. Materials. 2022;15:2195.
4. Castañón-Cortés LG, Bravo-Vázquez LA, Santoyo-Valencia G, et al. Current advances in the development of microRNA-integrated tissue engineering strategies: a cornerstone of regenerative medicine. Front Bioeng Biotechnol. 2024;12:1484151.
5. Gharibshahian M, Torkashvand M, Bavisi M, Aldaghi N, Alizadeh A. Recent advances in artificial intelligent strategies for tissue engineering and regenerative medicine. Skin Res Technol. 2024;30:e70016.
6. Jorgensen AM, Mahajan N, Atala A, Murphy SV. Advances in skin tissue engineering and regenerative medicine. J Burn Care Res. 2023;44:S33-41.
7. Blair NF, Frith TJR, Barbaric I. Regenerative medicine: advances from developmental to degenerative diseases. In: El-khamisy S, Editor. Personalised medicine. Cham: Springer International Publishing; 2017. pp. 225-39.
8. Yao Y, Xu XH, Jin L. Macrophage polarization in physiological and pathological pregnancy. Front Immunol. 2019;10:792.
9. BioRender: science illustration and figure creation tool. Available from: https://www.biorender.com/. [Last accessed on 16 Apr 2025].
10. Pang J, Maienschein-Cline M, Koh TJ. Monocyte/macrophage heterogeneity during skin wound healing in mice. J Immunol. 2022;209:1999-2011.
11. Jung SH, Hwang BH, Shin S, et al. Spatiotemporal dynamics of macrophage heterogeneity and a potential function of Trem2hi macrophages in infarcted hearts. Nat Commun. 2022;13:4580.
12. Lantz C, Radmanesh B, Liu E, Thorp EB, Lin J. Single-cell RNA sequencing uncovers heterogenous transcriptional signatures in macrophages during efferocytosis. Sci Rep. 2020;10:14333.
13. Mosquera JV, Auguste G, Wong D, et al. Integrative single-cell meta-analysis reveals disease-relevant vascular cell states and markers in human atherosclerosis. Cell Rep. 2023;42:113380.
14. Li W, Xu F, Dai F, et al. Hydrophilic surface-modified 3D printed flexible scaffolds with high ceramic particle concentrations for immunopolarization-regulation and bone regeneration. Biomater Sci. 2023;11:3976-97.
15. Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote Pro-wound healing phenotypes. Front Physiol. 2018;9:419.
16. Zhu Z, Ding J, Ma Z, Iwashina T, Tredget EE. Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation. Wound Repair Regen. 2016;24:644-56.
17. Kwak G, Cheng J, Kim H, et al. Sustained exosome-guided macrophage polarization using hydrolytically degradable PEG hydrogels for cutaneous wound healing: identification of key proteins and MiRNAs, and sustained release formulation. Small. 2022;18:e2200060.
18. Chen J, Li M, Yang C, et al. Macrophage phenotype switch by sequential action of immunomodulatory cytokines from hydrogel layers on titania nanotubes. Colloids Surf B Biointerfaces. 2018;163:336-45.
19. Carnicer-Lombarte A, Chen ST, Malliaras GG, Barone DG. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front Bioeng Biotechnol. 2021;9:622524.
20. Cha BH, Shin SR, Leijten J, et al. Integrin-mediated interactions control macrophage polarization in 3D hydrogels. Adv Healthc Mater. 2017;6:1700289.
21. Pang QM, Yang R, Zhang M, et al. Peripheral blood-derived mesenchymal stem cells modulate macrophage plasticity through the IL-10/STAT3 pathway. Stem Cells Int. 2022;2022:5181241.
22. Nie Z, Fan Q, Jiang W, et al. Placental mesenchymal stem cells suppress inflammation and promote M2-like macrophage polarization through the IL-10/STAT3/NLRP3 axis in acute lung injury. Front Immunol. 2024;15:1422355.
23. Waqas SFH, Ampem G, Röszer T. Analysis of IL-4/STAT6 signaling in macrophages. In: Badr MZ, Editor. Nuclear receptors. New York: Springer; 2019. pp. 211-24.
24. D’Alessio FR, Craig JM, Singer BD, et al. Enhanced resolution of experimental ARDS through IL-4-mediated lung macrophage reprogramming. Am J Physiol Lung Cell Mol Physiol. 2016;310:L733-46.
25. Daniel B, Nagy G, Horvath A, et al. The IL-4/STAT6/PPARγ signaling axis is driving the expansion of the RXR heterodimer cistrome, providing complex ligand responsiveness in macrophages. Nucleic Acids Res. 2018;46:4425-39.
26. Huang SC, Smith AM, Everts B, et al. Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity. 2016;45:817-30.
27. Spiller KL, Nassiri S, Witherel CE, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials. 2015;37:194-207.
28. Wu J, Jiang L, Wang S, Peng L, Zhang R, Liu Z. TGF β1 promotes the polarization of M2-type macrophages and activates PI3K/mTOR signaling pathway by inhibiting ISG20 to sensitize ovarian cancer to cisplatin. Int Immunopharmacol. 2024;134:112235.
29. Gaharwar AK, Singh I, Khademhosseini A. Engineered biomaterials for in situ tissue regeneration. Nat Rev Mater. 2020;5:686-705.
30. Liu Y, Suarez-Arnedo A, Riley L, Miley T, Xia J, Segura T. Spatial confinement modulates macrophage response in microporous annealed particle (MAP) scaffolds. Adv Healthc Mater. 2023;12:e2300823.
31. Wang X, Fu X, Luo D, et al. 3D printed high-precision porous scaffolds prepared by fused deposition modeling induce macrophage polarization to promote bone regeneration. Biomed Mater. 2024;19:035006.
32. Li W, Dai F, Zhang S, et al. Pore size of 3D-printed polycaprolactone/polyethylene glycol/hydroxyapatite scaffolds affects bone regeneration by modulating macrophage polarization and the foreign body response. ACS Appl Mater Interfaces. 2022;14:20693-707.
33. Mahon OR, Browe DC, Gonzalez-Fernandez T, et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials. 2020;239:119833.
34. Sridharan R, Ryan EJ, Kearney CJ, Kelly DJ, O’Brien FJ. Macrophage polarization in response to collagen scaffold stiffness is dependent on cross-linking agent used to modulate the stiffness. ACS Biomater Sci Eng. 2019;5:544-52.
35. Hong JY, Seo Y, Davaa G, Kim HW, Kim SH, Hyun JK. Decellularized brain matrix enhances macrophage polarization and functional improvements in rat spinal cord injury. Acta Biomater. 2020;101:357-71.
36. Pisani S, Dorati R, Genta I, Benazzo M, Conti B, Prina Mello A. A study focused on macrophages modulation induced by the polymeric electrospun matrices (EL-Ms) for application in tissue regeneration: in vitro proof of concept. Int J Pharm. 2021;603:120712.
37. Luu TU, Gott SC, Woo BW, Rao MP, Liu WF. Micro- and nanopatterned topographical cues for regulating macrophage cell shape and phenotype. ACS Appl Mater Interfaces. 2015;7:28665-72.
38. Wang M, Chen F, Tang Y, et al. Regulation of macrophage polarization and functional status by modulating hydroxyapatite ceramic micro/nano-topography. Mater Des. 2022;213:110302.
39. Zheng X, Chen L, Tan J, et al. Effect of micro/nano-sheet array structures on the osteo-immunomodulation of macrophages. Regen Biomater. 2022;9:rbac075.
40. Buck E, Lee S, Stone LS, Cerruti M. Protein adsorption on surfaces functionalized with COOH groups promotes anti-inflammatory macrophage responses. ACS Appl Mater Interfaces. 2021;13:7021-36.
41. Bygd HC, Forsmark KD, Bratlie KM. Altering in vivo macrophage responses with modified polymer properties. Biomaterials. 2015;56:187-97.
42. Bessa-Gonçalves M, Ribeiro-Machado C, Costa M, et al. Magnesium incorporation in fibrinogen scaffolds promotes macrophage polarization towards M2 phenotype. Acta Biomater. 2023;155:667-83.
43. Cicuéndez M, Casarrubios L, Barroca N, et al. Benefits in the macrophage response due to graphene oxide reduction by thermal treatment. Int J Mol Sci. 2021;22:6701.
44. Grotenhuis N, Vd Toom HF, Kops N, et al. In vitro model to study the biomaterial-dependent reaction of macrophages in an inflammatory environment. Br J Surg. 2014;101:983-92.
45. Palmer JA, Abberton KM, Mitchell GM, Morrison WA. Macrophage phenotype in response to implanted synthetic scaffolds: an immunohistochemical study in the rat. Cells Tissues Organs. 2014;199:169-83.
46. Zhu S, Chen Y, Lu Z, et al. Bacteroid cerium oxide particles promote macrophage polarization to achieve early vascularization and subsequent osseointegration around implants. Biochem Biophys Res Commun. 2024;703:149647.
47. He XT, Li X, Zhang M, et al. Role of molybdenum in material immunomodulation and periodontal wound healing: targeting immunometabolism and mitochondrial function for macrophage modulation. Biomaterials. 2022;283:121439.
48. Niu Y, Stadler FJ, Yang X, Deng F, Liu G, Xia H. HA-coated collagen nanofibers for urethral regeneration via in situ polarization of M2 macrophages. J Nanobiotechnology. 2021;19:283.
49. Ziegler ME, Khabaz K, Khoshab N, et al. Combining allograft adipose and fascia matrix as an off-the-shelf scaffold for adipose tissue engineering stimulates angiogenic responses and activates a proregenerative macrophage profile in a rodent model. Ann Plast Surg. 2023;91:294-300.
50. Pan X, Yuan S, Xun X, et al. Long-term recruitment of endogenous M2 macrophages by platelet lysate-rich plasma macroporous hydrogel scaffold for articular cartilage defect repair. Adv Healthc Mater. 2022;11:e2101661.
51. Yu X, Wang Y, Liu X, Ge Y, Zhang S. Ursolic acid loaded-mesoporous hydroxylapatite/chitosan therapeutic scaffolds regulate bone regeneration ability by promoting the M2-type polarization of macrophages. Int J Nanomedicine. 2021;16:5301-15.
52. Hachim D, LoPresti ST, Yates CC, Brown BN. Shifts in macrophage phenotype at the biomaterial interface via IL-4 eluting coatings are associated with improved implant integration. Biomaterials. 2017;112:95-107.
53. Tian P, Zhao L, Kim J, et al. Dual stimulus responsive borosilicate glass (BSG) scaffolds promote diabetic alveolar bone defectsrepair by modulating macrophage phenotype. Bioact Mater. 2023;26:231-48.
54. Holt DJ, Chamberlain LM, Grainger DW. Cell-cell signaling in co-cultures of macrophages and fibroblasts. Biomaterials. 2010;31:9382-94.
55. Jeong JH, Hur SS, Lobionda S, et al. Heparin-mimicking polymer-based hydrogel matrix regulates macrophage polarization by controlling cell adhesion. Biochem Biophys Res Commun. 2023;642:154-61.
56. Xool-Tamayo J, Arana-Argaez VE, Villa-de la Torre F, Chan-Zapata I, Vargas-Coronado RF, Cauich-Rodríguez JV. Macrophages morphology and cytokine reeducation by ex situ copper thiol complexes. Immunopharmacol Immunotoxicol. 2024;46:20-32.
57. Luo M, Zhao F, Liu L, et al. IFN-γ/SrBG composite scaffolds promote osteogenesis by sequential regulation of macrophages from M1 to M2. J Mater Chem B. 2021;9:1867-76.
58. Hu Y, Tang L, Wang Z, et al. Inducing in situ M2 macrophage polarization to promote the repair of bone defects via scaffold-mediated sustained delivery of luteolin. J Control Release. 2024;365:889-904.
59. Xie J, Wu X, Zheng S, Lin K, Su J. Aligned electrospun poly(L-lactide) nanofibers facilitate wound healing by inhibiting macrophage M1 polarization via the JAK-STAT and NF-κB pathways. J Nanobiotechnology. 2022;20:342.
60. Huang C, Teng J, Liu W, Wang J, Liu A. Modulation of macrophages by a phillyrin-loaded thermosensitive hydrogel promotes skin wound healing in mice. Cytokine. 2024;177:156556.
61. Shah A, Perez-Otero S, Tran D, Aponte HA, Oh C, Agrawal N. Infection rates of an intraoral versus extraoral approach to mandibular fracture repairs are equal: a systematic review and meta-analysis. J Oral Maxillofac Surg. 2024;82:449-60.
62. Perez D, Ellis E 3rd. Complications of mandibular fracture repair and secondary reconstruction. Semin Plast Surg. 2020;34:225-31.
63. Lander DP, Lee JJ, Kallogjeri D, et al. The impact of treatment delay on malunion and nonunion after open reduction of mandible fractures. Facial Plast Surg Aesthet Med. 2021;23:460-6.
64. Ginat D. Surgical implants in the head and neck: normal and abnormal imaging appearances. Semin Roentgenol. 2023;58:290-300.
65. Mamsen FPW, Kiilerich CH, Hesselfeldt-Nielsen J, et al. Risk stratification of local flaps and skin grafting in skin cancer-related facial reconstruction: a retrospective single-center study of 607 patients. J Pers Med. 2022;12:2067.
66. Ding Y, Liu G, Liu S, et al. A multifunction hydrogel-coating engineered implant for rescuing biofilm infection and boosting osseointegration by macrophage-related immunomodulation. Adv Healthc Mater. 2023;12:e2300722.
67. Andrade RGD, Reis B, Costas B, Lima SAC, Reis S. Modulation of macrophages M1/M2 polarization using carbohydrate-functionalized polymeric nanoparticles. Polymers. 2020;13:88.
68. Pei D, Zeng Z, Geng Z, et al. Modulation of macrophage polarization by secondary cross-linked hyaluronan-dopamine hydrogels. Int J Biol Macromol. 2024;270:132417.
69. Özcolak B, Erenay B, Odabaş S, Jandt KD, Garipcan B. Effects of bone surface topography and chemistry on macrophage polarization. Sci Rep. 2024;14:12721.
70. Giri PS, Rath SN. Macrophage polarization dynamics in biomaterials: implications for in vitro wound healing. ACS Appl Bio Mater. 2024;7:2413-22.
71. Takabatake K, Tsujigiwa H, Nakano K, et al. Effect of scaffold geometrical structure on macrophage polarization during bone regeneration using honeycomb tricalcium phosphate. Materials. 2024;17:4108.
72. Wang Y, Wang J, Gao R, et al. Biomimetic glycopeptide hydrogel coated PCL/nHA scaffold for enhanced cranial bone regeneration via macrophage M2 polarization-induced osteo-immunomodulation. Biomaterials. 2022;285:121538.
73. Wang Q, Tang Y, Ke Q, et al. Magnetic lanthanum-doped hydroxyapatite/chitosan scaffolds with endogenous stem cell-recruiting and immunomodulatory properties for bone regeneration. J Mater Chem B. 2020;8:5280-92.
74. Di Francesco D, Talmon M, Carton F, Fresu LG, Boccafoschi F. Macrophage polarization guided by immunomodulatory hydrogels. Hydrogels for tissue engineering and regenerative medicine. Elsevier; 2024. pp. 765-82.