REFERENCES
1. Teunis T, Heerma van Voss MR, Kon M, van Maurik JF. CT-angiography prior to DIEP flap breast reconstruction: a systematic review and meta-analysis. Microsurgery. 2013;33:496-502.
2. Smit JM, Dimopoulou A, Liss AG, et al. Preoperative CT angiography reduces surgery time in perforator flap reconstruction. J Plast Reconstr Aesthet Surg. 2009;62:1112-7.
4. Broyles JM, Smith JM, Phillips BT, et al. The effect of sarcopenia on perioperative complications in abdominally based free-flap breast reconstruction. J Surg Oncol. 2020;122:1240-6.
5. Jain NS, Bingham E, Luvisa BK, et al. Sarcopenia best predicts complications in free flap breast reconstruction. Plast Reconstr Surg Glob Open. 2023;11:e5125.
6. Shafiee A, Bahri RA, Rafiei MA. Frailty among patients undergoing breast reconstruction surgery: a systematic review and meta-analysis. J Plast Reconstr Aesthet Surg. 2023;84:556-66.
7. Kim S, Lee KT, Jeon BJ, Pyon JK, Mun GH. Association of preoperative sarcopenia with adverse outcomes of breast reconstruction using deep inferior epigastric artery perforator flap. Ann Surg Oncol. 2022;29:3800-8.
8. Espinosa-de-Los-Monteros A, Frias-Frias R, Alvarez-Tostado-Rivera A, Caralampio-Castro A, Llanes S, Saldivar A. Postoperative abdominal bulge and hernia rates in patients undergoing abdominally based autologous breast reconstruction: systematic review and meta-analysis. Ann Plast Surg. 2021;86:476-84.
9. Tokumoto H, Akita S, Kubota Y, Mitsukawa N. Relationship between preoperative abdominal wall strength and bulging at the abdominal free flap donor site for breast reconstruction. Plast Reconstr Surg. 2022;149:279e-86.
10. Kappos EA, Jaskolka J, Butler K, O’Neill AC, Hofer SOP, Zhong T. Preoperative computed tomographic angiogram measurement of abdominal muscles is a valuable risk assessment for bulge formation after microsurgical abdominal free flap breast reconstruction. Plast Reconstr Surg. 2017;140:170-7.
11. Park JW, Lee H, Jeon BJ, Pyon JK, Mun GH. Assessment of the risk of bulge/hernia formation after abdomen-based microsurgical breast reconstruction with the aid of preoperative computed tomographic angiography-derived morphometric measurements. J Plast Reconstr Aesthet Surg. 2020;73:1665-74.
12. Walgenbach KJ, Shestak KC. “Marriage” abdominoplasty: body contouring with limited scars combining mini-abdominoplasty and liposuction. Clin Plast Surg. 2004;31:571-81.
13. Stalder MW, Accardo K, Allen RJ, Sadeghi A. Aesthetic refinement of the abdominal donor site after autologous breast reconstruction. Plast Reconstr Surg. 2015;136:455-61.
14. Stewart KJ, Stewart DA, Coghlan B, Harrison DH, Jones BM, Waterhouse N. Complications of 278 consecutive abdominoplasties. J Plast Reconstr Aesthet Surg. 2006;59:1152-5.
15. Kim J, Son S, Mun GH. Risk factors for step-off deformity of the donor site following abdominal flap-based breast reconstruction. Plast Reconstr Surg. 2025;155:16e-25.
16. Azzi AJ, Hilzenrat R, Viezel-Mathieu A, Hemmerling T, Gilardino M. A review of objective measurement of flap volume in reconstructive surgery. Plast Reconstr Surg Glob Open. 2018;6:e1752.
17. Kim JH, Lee KT, Mun GH. Optimizing intraflap anastomosis of conjoined bilateral DIEP flap for breast reconstruction: planning, execution, and outcomes in 201 patients. Plast Reconstr Surg. 2025;155:608-16.
18. Lee KT, Mun GH. Volumetric planning using computed tomographic angiography improves clinical outcomes in DIEP flap breast reconstruction. Plast Reconstr Surg. 2016;137:771e-80.
19. Woo KJ, Kim EJ, Lee KT, Mun GH. A novel method to estimate the weight of the DIEP flap in breast reconstruction: DIEP-W, a simple calculation formula using paraumbilical flap thickness. J Reconstr Microsurg. 2016;32:520-7.
20. Cook JA, Tholpady SS, Momeni A, Chu MW. Predictors of internal mammary vessel diameter: a computed tomographic angiography-assisted anatomic analysis. J Plast Reconstr Aesthet Surg. 2016;69:1340-8.
21. Kim H, Lim SY, Pyon JK, Bang SI, Oh KS, Mun GH. Preoperative computed tomographic angiography of both donor and recipient sites for microsurgical breast reconstruction. Plast Reconstr Surg. 2012;130:11e-20.
22. Seth AK, Halvorson EG, Caterson SA, Carty MJ, Erdmann-Sager J. Left internal mammary vein size and its impact on microsurgical breast reconstruction. Plast Reconstr Surg Glob Open. 2022;10:e4704.
23. Kim H, Lim SY, Pyon JK, et al. Rib-sparing and internal mammary artery-preserving microsurgical breast reconstruction with the free DIEP flap. Plast Reconstr Surg. 2013;131:327e-34.
24. Kim EJ, Lee HJ, Mun GH. Muscle-splitting approach to thoracoacromial vein for superdrainage in deep inferior epigastric artery perforator flap breast reconstruction. Microsurgery. 2019;39:228-33.
25. Lee KT, Mun GH. Benefits of superdrainage using SIEV in DIEP flap breast reconstruction: a systematic review and meta-analysis. Microsurgery. 2017;37:75-83.
26. Rozen WM, Pan WR, Le Roux CM, Taylor GI, Ashton MW. The venous anatomy of the anterior abdominal wall: an anatomical and clinical study. Plast Reconstr Surg. 2009;124:848-53.
27. Bhullar H, Hughes K, Rozen WM, Rostek M, Hunter-Smith DJ. Demonstration of superficial venous dominance in the deep inferior epigastric perforator flap. ANZ J Surg. 2020;90:907-8.
28. Lie KH, Taylor GI, Ashton MW. Hydrogen peroxide priming of the venous architecture: a new technique that reveals the underlying anatomical basis for venous complications of DIEP, TRAM, and other abdominal flaps. Plast Reconstr Surg. 2014;133:790e-804.
29. Schaverien MV, Ludman CN, Neil-Dwyer J, et al. Relationship between venous congestion and intraflap venous anatomy in DIEP flaps using contrast-enhanced magnetic resonance angiography. Plast Reconstr Surg. 2010;126:385-92.
30. Kim SY, Mun GH. Comments on “predicting venous congestion before DIEP breast reconstruction by identifying atypical venous connections on preoperative CTA imaging”. Microsurgery. 2019;39:571-2.
31. Sadik KW, Pasko J, Cohen A, Cacioppo J. Predictive value of SIEV caliber and superficial venous dominance in free DIEP flaps. J Reconstr Microsurg. 2013;29:57-61.
32. Kim SY, Lee KT, Mun GH. The influence of a pfannenstiel scar on venous anatomy of the lower abdominal wall and implications for deep inferior epigastric artery perforator flap breast reconstruction. Plast Reconstr Surg. 2017;139:540-8.
33. Henry FP, Butler DP, Wood SH, Jallali N. Predicting and planning for SIEA flap utilisation in breast reconstruction: an algorithm combining pre-operative computed tomography analysis and intra-operative angiosome assessment. J Plast Reconstr Aesthet Surg. 2017;70:795-800.
34. Piorkowski JR, DeRosier LC, Nickerson P, Fix RJ. Preoperative computed tomography angiogram to predict patients with favorable anatomy for superficial inferior epigastric artery flap breast reconstruction. Ann Plast Surg. 2011;66:534-6.
35. Rozen WM, Chubb D, Grinsell D, Ashton MW. The variability of the superficial inferior epigastric artery (SIEA) and its angiosome: a clinical anatomical study. Microsurgery. 2010;30:386-91.
36. Zhang X, Mu D, Yang Y, et al. Predicting the feasibility of utilizing SIEA flap for breast reconstruction with preoperative BMI and computed tomography angiography (CTA) Data. Aesthetic Plast Surg. 2021;45:100-7.
37. Chang EI, Masià J, Smith ML. Combining autologous breast reconstruction and vascularized lymph node transfer. Semin Plast Surg. 2018;32:36-41.
38. Forte AJ, Cinotto G, Boczar D, et al. Lymph node transfer combined with deep inferior epigastric perforators and transverse rectus abdominis myocutaneous procedures: a systematic review. Gland Surg. 2020;9:521-7.
39. Winters H, Tielemans HJP, Hummelink S, Slater NJ, Ulrich DJO. DIEP flap breast reconstruction combined with vascularized lymph node transfer for patients with breast cancer-related lymphedema. Eur J Surg Oncol. 2022;48:1718-22.
40. Zhang H, Chen W, Mu L, et al. The distribution of lymph nodes and their nutrient vessels in the groin region: an anatomic study for design of the lymph node flap. Microsurgery. 2014;34:558-61.
41. Demiri E, Dionyssiou D, Kyriazidis I, Drougou A, Tsimponis A. Predesigned chimeric deep inferior epigastric perforator and inguinal lymph node flap for combined breast and lymphedema reconstruction: a comprehensive algorithmic approach. JPRAS Open. 2024;40:1-18.
42. Kim SY, Lee KT, Mun GH. Computed tomographic angiography-based planning of bipedicled DIEP flaps with intraflap crossover anastomosis: an anatomical and clinical study. Plast Reconstr Surg. 2016;138:409e-18.
43. Koolen PG, Lee BT, Lin SJ, Erhard HA, Greenspun DT. Bipedicle-conjoined perforator flaps in breast reconstruction. J Surg Res. 2015;197:256-64.
44. Kim J, Lee KT, Mun GH. Short fasciotomy-deep inferior epigastric perforator flap harvest for breast reconstruction. Plast Reconstr Surg. 2023;152:972e-84.
46. Kurlander DE, Le-Petross HT, Shuck JW, Butler CE, Selber JC. Robotic DIEP patient selection: analysis of CT angiography. Plast Reconstr Surg Glob Open. 2021;9:e3970.
47. Hummelink S, Hameeteman M, Hoogeveen Y, Slump CH, Ulrich DJ, Schultze Kool LJ. Preliminary results using a newly developed projection method to visualize vascular anatomy prior to DIEP flap breast reconstruction. J Plast Reconstr Aesthet Surg. 2015;68:390-4.
48. Pereira N, Kufeke M, Parada L, et al. Augmented reality microsurgical planning with a smartphone (ARM-PS): a dissection route map in your pocket. J Plast Reconstr Aesthet Surg. 2019;72:759-62.
49. Sullivan J, Skladman R, Varagur K, et al. From augmented to virtual reality in plastic surgery: blazing the trail to a new frontier. J Reconstr Microsurg. 2024;40:398-406.
50. Seth I, Lindhardt J, Jakobsen A, et al. Improving visualization of intramuscular perforator course: augmented reality headsets for DIEP flap breast reconstruction. Plast Reconstr Surg Glob Open. 2023;11:e5282.
51. Necker FN, Cholok DJ, Shaheen MS, et al. The reconstructive metaverse - collaboration in real-time shared mixed reality environments for microsurgical reconstruction. Surg Innov. 2024;31:563-6.
52. Ghasroddashti A, Guyn C, Martou G, Edmunds RW. Utility of 3D-printed vascular modeling in microsurgical breast reconstruction: a systematic review. J Plast Reconstr Aesthet Surg. 2024;96:95-104.
53. Jablonka EM, Wu RT, Mittermiller PA, Gifford K, Momeni A. 3-DIEPrinting: 3D-printed models to assist the intramuscular dissection in abdominally based microsurgical breast reconstruction. Plast Reconstr Surg Glob Open. 2019;7:e2222.
54. Mayer HF, Coloccini A, Viñas JF. Three-dimensional printing in breast reconstruction: current and promising applications. J Clin Med. 2024;13:3278.
55. Zhu KJ, Heron MJ, Zhu L, Seal SM, Mundy L, Broderick K. From printer to patient: a scoping review and new classification of ready-to-use three-dimensional printed constructs in autologous breast reconstruction. J Plast Reconstr Aesthet Surg. 2025;102:93-103.
56. Chae MP, Hunter-Smith DJ, Spychal RT, Rozen WM. 3D volumetric analysis for planning breast reconstructive surgery. Breast Cancer Res Treat. 2014;146:457-60.
57. Tomita K, Yano K, Hata Y, Nishibayashi A, Hosokawa K. DIEP flap breast reconstruction using 3-dimensional surface imaging and a printed mold. Plast Reconstr Surg Glob Open. 2015;3:e316.
58. Chae MP, Rozen WM, Patel NG, Hunter-Smith DJ, Ramakrishnan V. Enhancing breast projection in autologous reconstruction using the St Andrew’s coning technique and 3D volumetric analysis. Gland Surg. 2017;6:706-14.