REFERENCES
1. Maglara E, Angelis S, Solia E, et al. Three-dimensional (3D) printing in orthopedics education. J Long Term Eff Med Implants 2020;30:255-8.
2. Onigbinde OA, Chia T, Oyeniran OI, Ajagbe AO. The place of cadaveric dissection in post-COVID-19 anatomy education. Morphologie 2021;105:259-66.
3. Zhang Q, Deng J, Yan C, Yan XX, Li F, Pan AH. Who is willing to donate their bodies in China? Perceptions, attitudes and influencing factors among citizens of Changsha. Ann Anat 2020;229:151483.
4. Schaefer AF, Wilson AB, Barger JB, Azim HM, Brokaw JJ, Brooks WS. What does a modern anatomist look like? Current trends in the training of anatomy educators. Anat Sci Educ 2019;12:225-35.
5. Pujol S, Baldwin M, Nassiri J, Kikinis R, Shaffer K. Using 3D modeling techniques to enhance teaching of difficult anatomical concepts. Acad Radiol 2016;23:507-16.
6. McMenamin PG, Quayle MR, McHenry CR, Adams JW. The production of anatomical teaching resources using three-dimensional (3D) printing technology. Anat Sci Educ 2014;7:479-86.
7. Benayoun M, Langlais T, Laurent R, et al. 3D planning and patient-specific surgical guides in forearm osteotomy in children: radiographic accuracy and clinical morbidity. Orthop Traumatol Surg Res 2022;108:102925.
8. AbouHashem Y, Dayal M, Savanah S, Štrkalj G. The application of 3D printing in anatomy education. Med Educ Online 2015;20:29847.
9. Dhumale S, Barraclough T, Stokes A, Lam W. Producing 3D printed hand models for anatomy education using cadaveric dissection: a feasibility study. Bulletin 2018;100:217-22.
10. Mogali SR, Yeong WY, Tan HKJ, et al. Evaluation by medical students of the educational value of multi-material and multi-colored three-dimensional printed models of the upper limb for anatomical education. Anat Sci Educ 2018;11:54-64.
11. Wilk R, Likus W, Hudecki A, Syguła M, Różycka-Nechoritis A, Nechoritis K. What would you like to print? Students’ opinions on the use of 3D printing technology in medicine. PLoS One 2020;15:e0230851.
12. Wilson AB, Brown KM, Misch J, et al. Breaking with tradition: a scoping meta-analysis analyzing the effects of student-centered learning and computer-aided instruction on student performance in anatomy. Anat Sci Educ 2019;12:61-73.
13. Podolsky DJ, Wong Riff KW, Drake JM, Forrest CR, Fisher DM. A high fidelity cleft lip simulator. Plast Reconstr Surg Glob Open 2018;6:e1871.
14. Noel OF, Lopez J, Alperovich M, Prsic A, Lin A, Hsia HC. Surgical simulation education in plastic surgery: current state of the art and need for improvement. Art Surg 2023;7:1.
15. Prsic A, Boyajian MK, Snapp WK, Crozier J, Woo AS. A 3-dimensional-printed hand model for home-based acquisition of fracture fixation skills without fluoroscopy. J Surg Educ 2020;77:1341-4.
16. Papavasiliou T, Nicholas R, Cooper L, et al. Utilisation of a 3D printed ex vivo flexor tendon model to improve surgical training. J Plast Reconstr Aesthet Surg 2022;75:1255-60.
17. Schenker Y, Fernandez A, Sudore R, Schillinger D. Interventions to improve patient comprehension in informed consent for medical and surgical procedures: a systematic review. Med Decis Making 2011;31:151-73.
18. Watson PW, McKinstry B. A systematic review of interventions to improve recall of medical advice in healthcare consultations. J R Soc Med 2009;102:235-43.
19. Lynn C, Quast L, Rogers H, Effinger K, Gilleland-Marchak J. Systematic review of health literacy in childhood cancer patients, survivors, and their caregivers. J Pediatr Psychol 2020;45:373-85.
20. Patera E, Rust PA. Creation of 3D anatomical models illustrating an intact and centrally torn triangular fibrocartilage complex for patient education prior treatment. Ann Anat 2022;240:151854.
21. Hecker A, Tax L, Giese B, et al. Clinical applications of three-dimensional printing in upper extremity surgery: a systematic review. J Pers Med 2023;13:294.
22. Zheng W, Su J, Cai L, et al. Application of 3D-printing technology in the treatment of humeral intercondylar fractures. Orthop Traumatol Surg Res 2018;104:83-8.
23. Chen C, Cai L, Zheng W, Wang J, Guo X, Chen H. The efficacy of using 3D printing models in the treatment of fractures: a randomised clinical trial. BMC Musculoskelet Disord 2019;20:65.
24. Yang L, Grottkau B, He Z, Ye C. Three dimensional printing technology and materials for treatment of elbow fractures. Int Orthop 2017;41:2381-7.
25. Zhuang YD, Zhou MC, Liu SC, Wu JF, Wang R, Chen CM. Effectiveness of personalized 3D printed models for patient education in degenerative lumbar disease. Patient Educ Couns 2019;102:1875-81.
26. Zheng W, Chen C, Zhang C, Tao Z, Cai L. The feasibility of 3D printing technology on the treatment of pilon fracture and its effect on doctor-patient communication. Biomed Res Int 2018;2018:8054698.
27. Bogdanova R, Boulanger P, Zheng B. Three-dimensional eye tracking in a surgical scenario. Surg Innov 2015;22:522-7.
28. Segaran N, Saini G, Mayer JL, et al. Application of 3D printing in preoperative planning. J Clin Med 2021;10:917.
29. Honigmann P, Schumacher R, Marek R, Büttner F, Thieringer F, Haefeli M. A three-dimensional printed patient-specific scaphoid replacement: a cadaveric study. J Hand Surg Eur Vol 2018;43:407-12.
30. Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio 2019;1:100008.
31. Hochman JB, Rhodes C, Kraut J, Pisa J, Unger B. End user comparison of anatomically matched 3-dimensional printed and virtual haptic temporal bone simulation: a pilot study. Otolaryngol Head Neck Surg 2015;153:263-8.
32. Kozakiewicz M, Elgalal M, Loba P, et al. Clinical application of 3D pre-bent titanium implants for orbital floor fractures. J Craniomaxillofac Surg 2009;37:229-34.
33. Kang HJ, Kim BS, Kim SM, et al. Can preoperative 3D printing change surgeon’s operative plan for distal tibia fracture? Biomed Res Int 2019;2019:7059413.
34. Hung CC, Li YT, Chou YC, et al. Conventional plate fixation method versus pre-operative virtual simulation and three-dimensional printing-assisted contoured plate fixation method in the treatment of anterior pelvic ring fracture. Int Orthop 2019;43:425-31.
35. Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online 2016;15:115.
36. Peeters W, Verstreken F, Vanhees M. Correction of scaphoid nonunion humpback deformity using three-dimensional printing technology. J Hand Surg Eur Vol 2021;46:430-2.
37. Oki S, Matsuo T, Furuhata R, Iwabu S. Scaphoid non-union with pre-existing screws treated by 3D preoperative planning. BMJ Case Rep 2021;14:e239548.
38. Schmidt M, Holzbauer M, Kwasny O, Huemer GM, Froschauer S. 3D printing for scaphoid-reconstruction with medial femoral condyle flap. Injury 2020;51:2900-3.
39. Houdek MT, Matsumoto JM, Morris JM, Bishop AT, Shin AY. Technique for 3-dimesional (3D) modeling of osteoarticular medial femoral condyle vascularized grafting to replace the proximal pole of unsalvagable scaphoid nonunions. Tech Hand Up Extrem Surg 2016;20:117-24.
40. Shim BJ, Lee JH, Gong HS. Preoperative three-dimensional simulation of osteotomy for correction of malunion of both bones of forearm: a case report. J Hand Surg Asian Pac Vol 2022;27:726-31.
41. Kim HT, Ahn TY, Jang JH, Kim KH, Lee SJ, Jung DY. A graphic overlay method for selection of osteotomy site in chronic radial head dislocation: an evaluation of 3D-printed bone models. J Pediatr Orthop 2017;37:e88-95.
42. Hamada Y, Gotani H, Sasaki K, Tanaka Y, Egawa H, Kanchanathepsak T. Corrective osteotomy of malunited diaphyseal fractures of the forearm simplified using 3-dimensional CT data: proposal of our simple strategy through case presentation. Hand 2017;12:NP95-8.
43. Bauer AS, Storelli DAR, Sibbel SE, McCarroll HR, Lattanza LL. Preoperative computer simulation and patient-specific guides are safe and effective to correct forearm deformity in children. J Pediatr Orthop 2017;37:504-10.
44. Hoevenaren IA, Vreeken RD, Verhulst AC, Ulrich DJO, Maal TJJ, Wagner T. Virtual incision pattern planning using three-dimensional images for optimization of syndactyly surgery. Plast Reconstr Surg Glob Open 2018;6:e1694.
45. Zang CW, Zhang JL, Meng ZZ, et al. 3D printing technology in planning thumb reconstructions with second toe transplant. Orthop Surg 2017;9:215-20.
46. Campe A, Nagy L, Arbab D, Dumont CE. Corrective osteotomies in malunions of the distal radius: do we get what we planned? Clin Orthop Relat Res 2006;450:179-85.
47. Prommersberger KJ, Van Schoonhoven J, Lanz UB. Outcome after corrective osteotomy for malunited fractures of the distal end of the radius. J Hand Surg Br 2002;27:55-60.
48. Zhang D, Bauer AS, Blazar P, Earp BE. Three-dimensional printing in hand surgery. J Hand Surg Am 2021;46:1016-22.
49. Schröder FF, de Graaff F, Vochteloo AJH. Patient-specific guided osteotomy to correct a symptomatic malunion of the left forearm. Children 2021;8:707.
50. Honigmann P, Thieringer F, Steiger R, Haefeli M, Schumacher R, Henning J. A simple 3-Dimensional printed aid for a corrective palmar opening wedge osteotomy of the distal radius. J Hand Surg Am 2016;41:464-9.
51. Schweizer A, Fürnstahl P, Nagy L. Three-dimensional correction of distal radius intra-articular malunions using patient-specific drill guides. J Hand Surg Am 2013;38:2339-47.
52. Storelli DA, Bauer AS, Lattanza LL, McCarroll HR Jr. The use of computer-aided design and 3-dimensional models in the treatment of forearm malunions in children. Tech Hand Up Extrem Surg 2015;19:23-6.
53. Miyake J, Murase T, Oka K, Moritomo H, Sugamoto K, Yoshikawa H. Computer-assisted corrective osteotomy for malunited diaphyseal forearm fractures. J Bone Joint Surg Am 2012;94:e150.
54. Murase T, Oka K, Moritomo H, Goto A, Yoshikawa H, Sugamoto K. Three-dimensional corrective osteotomy of malunited fractures of the upper extremity with use of a computer simulation system. J Bone Joint Surg Am 2008;90:2375-89.
55. Bauer DE, Zimmermann S, Aichmair A, et al. Conventional versus computer-assisted corrective osteotomy of the forearm: a retrospective analysis of 56 consecutive cases. J Hand Surg Am 2017;42:447-55.
56. Salabi V, Rigoulot G, Sautet A, Cambon-Binder A. Three-dimensional-printed patient-specific Kirschner-wire guide for percutaneous fixation of undisplaced scaphoid fractures: a cadaveric study. J Hand Surg Eur Vol 2019;44:692-6.
57. DeWolf MC, Hartov A, Fortney TA, Warhold LG. Three-dimensional printed targeting device for scaphoid fracture fixation. Hand 2022;17:134-40.
58. Yin HW, Xu J, Xu WD. 3-dimensional printing-assisted percutaneous fixation for acute scaphoid fracture: 1-shot procedure. J Hand Surg Am 2017;42:301.e1-5.
59. Rong C, Zhu S, Zhang Q, Xu H, Zhang L, Han Q. Minimally invasive percutaneous screw guided by 3-dimensional-printed guide for the treatment of scaphoid fractures. J Hand Surg Am 2023;48:1279.e1-7.
60. Schweizer A, Mauler F, Vlachopoulos L, Nagy L, Fürnstahl P. Computer-assisted 3-dimensional reconstructions of scaphoid fractures and nonunions with and without the use of patient-specific guides: early clinical outcomes and postoperative assessments of reconstruction accuracy. J Hand Surg Am 2016;41:59-69.
61. Marcano-Fernández FA, Berenguer A, Fillat-Gomà F, Corderch-Navarro S, Cámara-Cabrera J, Sánchez-Flò R. A customized percutaneous three-dimensional-printed guide for scaphoid fixation versus a freehand technique: a comparative study. J Hand Surg Eur Vol 2021;46:1081-7.
62. Yin HW, Feng JT, Yu BF, Shen YD, Gu YD, Xu WD. 3D printing-assisted percutaneous fixation makes the surgery for scaphoid nonunion more accurate and less invasive. J Orthop Translat 2020;24:138-43.
63. Fillat-Gomà F, Marcano-Fernández FA, Coderch-Navarro S, Martínez-Carreres L, Berenguer A. 3D printing innovation: new insights into upper extremity surgery planning. Injury 2021;52:S117-24.
64. Byrne AM, Impelmans B, Bertrand V, Van Haver A, Verstreken F. Corrective osteotomy for malunited diaphyseal forearm fractures using preoperative 3-dimensional planning and patient-specific surgical guides and implants. J Hand Surg Am 2017;42:836.e1-12.
65. Jacobs CA, Lin AY. A new classification of three-dimensional printing technologies: systematic review of three-dimensional printing for patient-specific craniomaxillofacial surgery. Plast Reconstr Surg 2017;139:1211-20.
66. Smith KE, Dupont KM, Safranski DL, et al. Use of 3D printed bone plate in novel technique to surgically correct hallux valgus deformities. Tech Orthop 2016;31:181-9.
67. Wang D, Wang Y, Wu S, et al. Customized a Ti6Al4V bone plate for complex pelvic fracture by selective laser melting. Materials 2017;10:35.
68. Sing SL, An J, Yeong WY, Wiria FE. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res 2016;34:369-85.
69. Körner C. Additive manufacturing of metallic components by selective electron beam melting - a review. Int Mater Rev 2016;61:361-77.
70. Zhou L, Miller J, Vezza J, et al. Additive manufacturing: a comprehensive review. Sensors 2024;24:2668.
71. Kim SJ, Jo YH, Choi WS, et al. Biomechanical properties of 3-dimensional printed volar locking distal radius plate: comparison with conventional volar locking plate. J Hand Surg Am 2017;42:747.e1-6.
72. Bagheri ZS, Tavakkoli Avval P, Bougherara H, Aziz MSR, Schemitsch EH, Zdero R. Biomechanical analysis of a new carbon fiber/flax/epoxy bone fracture plate shows less stress shielding compared to a standard clinical metal plate. J Biomech Eng 2014;136:091002.
73. Raad F, Schep NWL. [Malunion of the distal radius: correction with a 3D-printed patient-specific plate]. Ned Tijdschr Geneeskd 2020;164:D4617.
74. Dobbe JGG, Peymani A, Roos HAL, Beerens M, Streekstra GJ, Strackee SD. Patient-specific plate for navigation and fixation of the distal radius: a case series. Int J Comput Assist Radiol Surg 2021;16:515-24.
75. Gittard SD, Narayan RJ, Lusk J, et al. Rapid prototyping of scaphoid and lunate bones. Biotechnol J 2009;4:129-34.
76. Rossello MI. A case of total scaphoid titanium custom-made 3D-printed prostheses with one-year follow-up. Case Reports Plast Surg Hand Surg 2020;7:7-12.
77. Rossello MI. Short-term findings of a custom-made 3D-printed titanium partial scaphoid prosthesis and scapholunate interosseous ligament reconstruction. BMJ Case Rep 2021;14:e241090.
78. Ma ZJ, Liu ZF, Shi QS, et al. Varisized 3D-printed lunate for Kienböck’s disease in different stages: preliminary results. Orthop Surg 2020;12:792-801.
79. Hunag YC, Chang CM, Huang SF, Hong CH, Lin CL. Development and biomechanical evaluation of an anatomical 3D printing modularized proximal inter-phalangeal joint implant based on the computed tomography image reconstructions. Int J Bioprint 2022;8:579.
80. Yuan L, Ding S, Wen C. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review. Bioact Mater 2019;4:56-70.
81. Kačarević ŽP, Rider PM, Alkildani S, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials 2018;11:2199.
82. Vijayavenkataraman S, Lu WF, Fuh JY. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 2016;8:032001.
83. Wu Y, Ravnic DJ, Ozbolat IT. Intraoperative bioprinting: repairing tissues and organs in a surgical setting. Trends Biotechnol 2020;38:594-605.
84. Ashammakhi N, Hasan A, Kaarela O, et al. Advancing frontiers in bone bioprinting. Adv Healthc Mater 2019;8:e1801048.
85. Rinoldi C, Fallahi A, Yazdi IK, et al. Mechanical and biochemical stimulation of 3D multilayered scaffolds for tendon tissue engineering. ACS Biomater Sci Eng 2019;5:2953-64.
86. Bülow A, Schäfer B, Beier JP. Three-dimensional bioprinting in soft tissue engineering for plastic and reconstructive surgery. Bioengineering 2023;10:1232.
87. Varkey M, Visscher DO, van Zuijlen PPM, Atala A, Yoo JJ. Skin bioprinting: the future of burn wound reconstruction? Burns Trauma 2019;7:4.
88. Salah M, Tayebi L, Moharamzadeh K, Naini FB. Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery. Maxillofac Plast Reconstr Surg 2020;42:18.
89. Di Bella C, Duchi S, O’Connell CD, et al. In situ handheld three-dimensional bioprinting for cartilage regeneration. J Tissue Eng Regen Med 2018;12:611-21.
90. Albouy M, Desanlis A, Brosset S, et al. A preliminary study for an intraoperative 3D bioprinting treatment of severe burn injuries. Plast Reconstr Surg Glob Open 2022;10:e4056.
91. Gonzalez-Fernandez T, Tenorio AJ, Campbell KT, Silva EA, Leach JK. Alginate-based bioinks for 3D bioprinting and fabrication of anatomically accurate bone grafts. Tissue Eng Part A 2021;27:1168-81.
92. Gomez-Cerezo MN, Perevoshchikova N, Ruan R, et al. Additively manufactured polyethylene terephthalate scaffolds for scapholunate interosseous ligament reconstruction. Biomater Adv 2023;149:213397.
93. Van Lieshout EMM, Verhofstad MHJ, Beens LM, et al. Personalized 3D-printed forearm braces as an alternative for a traditional plaster cast or splint; a systematic review. Injury 2022;53:S47-52.
94. Patterson RM, Salatin B, Janson R, Salinas SP, Mullins MJS. A current snapshot of the state of 3D printing in hand rehabilitation. J Hand Ther 2020;33:156-63.
95. Guebeli A, Thieringer F, Honigmann P, Keller M. In-house 3D-printed custom splints for non-operative treatment of distal radial fractures: a randomized controlled trial. J Hand Surg Eur Vol 2024;49:350-8.
96. Chen Y, Lin H, Yu Q, et al. Application of 3D-printed orthopedic cast for the treatment of forearm fractures: finite element analysis and comparative clinical assessment. Biomed Res Int 2020;2020:9569530.
97. Chen YJ, Lin H, Zhang X, Huang W, Shi L, Wang D. Application of 3D-printed and patient-specific cast for the treatment of distal radius fractures: initial experience. 3D Print Med 2017;3:11.
98. Papavasiliou T, Shah RK, Chatzimichail S, Uppal L, Chan JCY. Three-dimensional printed customized adjustable mallet finger splint: a cheap, effective, and comfortable alternative. Plast Reconstr Surg Glob Open 2021;9:e3500.
99. Baradaran A, Baradaran A, Ebrahimzadeh MH, Kachooei AR, Rivlin M, Beredjiklian P. Comparison of custom-made versus prefabricated thumb splinting for carpometacarpal arthrosis: a systematic review and meta-analysis. Arch Bone Joint Surg 2018;6:478-85.
100. Mohammadi A, Lavranos J, Choong P, Oetomo D. Flexo-glove: a 3D printed soft exoskeleton robotic glove for impaired hand rehabilitation and assistance. Annu Int Conf IEEE Eng Med Biol Soc 2018;2018:2120-3.
101. Cabibihan JJ. Patient-specific prosthetic fingers by remote collaboration--a case study. PLoS One 2011;6:e19508.
102. Young KJ, Pierce JE, Zuniga JM. Assessment of body-powered 3D printed partial finger prostheses: a case study. 3D Print Med 2019;5:7.
103. Xu G, Gao L, Tao K, et al. Three-dimensional-printed upper limb prosthesis for a child with traumatic amputation of right wrist: a case report. Medicine 2017;96:e9426.
104. Alvial P, Bravo G, Bustos MP, et al. Quantitative functional evaluation of a 3D-printed silicone-embedded prosthesis for partial hand amputation: a case report. J Hand Ther 2018;31:129-36.
105. Farrell D, Noorbakhsh S, Miller T, Chambers J, McClellan WT. Implementation and utilization of a 3d printed hand surgical simulator for surgery residency education. Plast Reconstr Surg Glob Open 2021;9:138.
106. Zheng Y, Liu G, Yu L, et al. Effects of a 3D-printed orthosis compared to a low-temperature thermoplastic plate orthosis on wrist flexor spasticity in chronic hemiparetic stroke patients: a randomized controlled trial. Clin Rehabil 2020;34:194-204.
107. Oud TAM, Lazzari E, Gijsbers HJH, Gobbo M, Nollet F, Brehm MA. Effectiveness of 3D-printed orthoses for traumatic and chronic hand conditions: a scoping review. PLoS One 2021;16:e0260271.
108. Ang BWK, Yeow CH. Print-it-Yourself (PIY) glove: a fully 3D printed soft robotic hand rehabilitative and assistive exoskeleton for stroke patients. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2017 Sep 24-28; Vancouver, BC, Canada. IEEE; 2017. pp. 1219-23.
109. Molaei A, Foomany NA, Parsapour M, Dargahi J. A portable low-cost 3D-printed wrist rehabilitation robot: design and development. MechMach Theory 2022;171:104719.
110. Wang K, Shi Y, He W, et al. The research on 3D printing fingerboard and the initial application on cerebral stroke patient’s hand spasm. Biomed Eng Online 2018;17:92.
111. Chen ZH, Yang YL, Lin KW, Sun PC, Chen CS. Functional assessment of 3D-printed multifunction assistive hand device for chronic stroke patients. IEEE Trans Neural Syst Rehabil Eng 2022;30:1261-6.
112. Huang TY, Pan LH, Yang WW, Huang LY, Sun PC, Chen CS. Biomechanical evaluation of three-dimensional printed dynamic hand device for patients with chronic stroke. IEEE Trans Neural Syst Rehabil Eng 2019;27:1246-52.
113. Yang YS, Tseng CH, Fang WC, Han IW, Huang SC. Effectiveness of a new 3D-printed dynamic hand-wrist splint on hand motor function and spasticity in chronic stroke patients. J Clin Med 2021;10:4549.
114. U.S. Food and Drug Administration. Discussion paper: 3D printing medical devices at the point of care. US FDA. 2021. Available from: https://www.fda.gov/media/154729/download. [Last accessed on 29 Aug 2024].
115. U.S. Food and Drug Administration. Technical considerations for additive manufactured medical devices: guidance for industry and food and drug administration staff. 2017. Available from: https://www.fda.gov/media/97633/download. [Last accessed on 29 Aug 2024].
116. Guidance for industry. Metered dose inhaler (MDI) and dry powder inhaler (DPI) drug products. Chemistry, manufacturing, and controls documentation. 1998. Available from: https://app.gxp-services.net/guidemgr/files/1-7-6.pdf. [Last accessed on 29 Aug 2024].