REFERENCES

1. Bishop SN, Selber JC. Minimally invasive robotic breast reconstruction surgery. Gland Surg. 2021;10:469-78.

2. Zhang S, Xie Y, Liang F, Wang Y, Lv Q, Du Z. Endoscopic-assisted nipple-sparing mastectomy with direct-to-implant subpectoral breast reconstruction in the management of breast cancer. Plast Reconstr Surg Glob Open. 2021;9:e3978.

3. Leff DR, Vashisht R, Yongue G, Keshtgar M, Yang GZ, Darzi A. Endoscopic breast surgery: where are we now and what might the future hold for video-assisted breast surgery? Breast Cancer Res Treat. 2011;125:607-25.

4. Pavone M, Baroni A, Campolo F, et al. Robotic assisted versus laparoscopic surgery for deep endometriosis: a meta-analysis of current evidence. J Robot Surg. 2024;18:212.

5. Chen K, M Beeraka N, Zhang J, et al. Efficacy of Da Vinci robot-assisted lymph node surgery than conventional axillary lymph node dissection in breast cancer - a comparative study. Int J Med Robot. 2021;17:e2307.

6. Nessa A, Shaikh S, Fuller M, Masannat YA, Kastora SL. Postoperative complications and surgical outcomes of robotic versus conventional nipple-sparing mastectomy in breast cancer: meta-analysis. Br J Surg. 2024;111:znad336.

7. Bashir M, Harky A. Artificial intelligence in aortic surgery: the rise of the machine. Semin Thorac Cardiovasc Surg. 2019;31:635-7.

8. Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf Sci Syst. 2014;2:3.

9. Zarkowsky DS, Stonko DP. Artificial intelligence's role in vascular surgery decision-making. Semin Vasc Surg. 2021;34:260-7.

10. Eadie LH, Seifalian AM, Davidson BR. Telemedicine in surgery. Br J Surg. 2003;90:647-58.

11. Loftus TJ, Tighe PJ, Filiberto AC, et al. Artificial intelligence and surgical decision-making. JAMA Surg. 2020;155:148-58.

12. Satava RM. Surgical robotics: the early chronicles: a personal historical perspective. Surg Laparosc Endosc Percutan Tech. 2002;12:6-16.

13. Morrell ALG, Morrell-Junior AC, Morrell AG, et al. The history of robotic surgery and its evolution: when illusion becomes reality. Rev Col Bras Cir. 2021;48:e20202798.

14. Ghezzi T, Campos Corleta O. 30 years of robotic surgery. World J Surg. 2016;40:2550-7.

15. Ranev D, Teixeira J. History of computer-assisted surgery. Surg Clin North Am. 2020;100:209-18.

16. van Mulken TJM, Boymans CAEM, Schols RM, et al. Preclinical experience using a new robotic system created for microsurgery. Plast Reconstr Surg. 2018;142:1367-76.

17. Guerrini GP, Esposito G, Magistri P, et al. Robotic versus laparoscopic gastrectomy for gastric cancer: the largest meta-analysis. Int J Surg. 2020;82:210-28.

18. Guo Z, Shi Y, Song Z, et al. Single-incision robotic assisted surgery: a nonrandomized cohort pilot study on a novel surgical platform in colorectal surgery. Int J Surg. 2023;109:3417-29.

19. Schmelzle M, Feldbrügge L, Ortiz Galindo SA, et al. Robotic vs. laparoscopic liver surgery: a single-center analysis of 600 consecutive patients in 6 years. Surg Endosc. 2022;36:5854-62.

20. Kalata S, Thumma JR, Norton EC, Dimick JB, Sheetz KH. Comparative safety of robotic-assisted vs laparoscopic cholecystectomy. JAMA Surg. 2023;158:1303-10.

21. Catto JWF, Khetrapal P, Ricciardi F, et al; iROC Study Team. Effect of robot-assisted radical cystectomy with intracorporeal urinary diversion vs open radical cystectomy on 90-day morbidity and mortality among patients with bladder cancer: a randomized clinical trial. JAMA. 2022;327:2092-103.

22. Minamimura K, Aoki Y, Kaneya Y, et al. Current status of robotic hepatobiliary and pancreatic surgery. J Nippon Med Sch. 2024;91:10-9.

23. Alkatout I, O'Sullivan O, Peters G, Maass N. Expanding robotic-assisted surgery in gynecology using the potential of an advanced robotic system. Medicina. 2023;60:53.

24. Bae HL, Wong JS, Kim SJ, et al. Surgical outcomes of robotic thyroidectomy for thyroid tumors over 4 cm via the bilateral axillo-breast approach. Sci Rep. 2024;14:11646.

25. Toesca A, Peradze N, Galimberti V, et al. Robotic nipple-sparing mastectomy and immediate breast reconstruction with implant: first report of surgical technique. Ann Surg. 2017;266:e28-30.

26. Lindenblatt N, Grünherz L, Wang A, et al. Early experience using a new robotic microsurgical system for lymphatic surgery. Plast Reconstr Surg Glob Open. 2022;10:e4013.

27. van Mulken TJM, Schols RM, Scharmga AMJ, et al; MicroSurgical Robot Research Group. First-in-human robotic supermicrosurgery using a dedicated microsurgical robot for treating breast cancer-related lymphedema: a randomized pilot trial. Nat Commun. 2020;11:757.

28. Pandav K, Te AG, Tomer N, Nair SS, Tewari AK. Leveraging 5G technology for robotic surgery and cancer care. Cancer Rep. 2022;5:e1595.

29. O'Sullivan S, Leonard S, Holzinger A, et al. Operational framework and training standard requirements for AI-empowered robotic surgery. Int J Med Robot. 2020;16:1-13.

30. Medina-Franco H, Vasconez LO, Fix RJ, et al. Factors associated with local recurrence after skin-sparing mastectomy and immediate breast reconstruction for invasive breast cancer. Ann Surg. 2002;235:814-9.

31. Ueda S, Tamaki Y, Yano K, et al. Cosmetic outcome and patient satisfaction after skin-sparing mastectomy for breast cancer with immediate reconstruction of the breast. Surgery. 2008;143:414-25.

32. Yi M, Kronowitz SJ, Meric-Bernstam F, et al. Local, regional, and systemic recurrence rates in patients undergoing skin-sparing mastectomy compared with conventional mastectomy. Cancer. 2011;117:916-24.

33. Yamashita Y, Tsunoda H, Nagura N, et al. Long-term oncologic safety of nipple-sparing mastectomy with immediate reconstruction. Clin Breast Cancer. 2021;21:352-9.

34. Sacchini V, Pinotti JA, Barros AC, et al. Nipple-sparing mastectomy for breast cancer and risk reduction: oncologic or technical problem? J Am Coll Surg. 2006;203:704-14.

35. Wagner JL, Fearmonti R, Hunt KK, et al. Prospective evaluation of the nipple-areola complex sparing mastectomy for risk reduction and for early-stage breast cancer. Ann Surg Oncol. 2012;19:1137-44.

36. Gerber B, Krause A, Dieterich M, Kundt G, Reimer T. The oncological safety of skin sparing mastectomy with conservation of the nipple-areola complex and autologous reconstruction: an extended follow-up study. Ann Surg. 2009;249:461-8.

37. Haslinger ML, Sosin M, Bartholomew AJ, et al. Positive nipple margin after nipple-sparing mastectomy: an alternative and oncologically safe approach to preserving the nipple-areolar complex. Ann Surg Oncol. 2018;25:2303-7.

38. Mesdag V, Régis C, Tresch E, et al. Nipple sparing mastectomy for breast cancer is associated with high patient satisfaction and safe oncological outcomes. J Gynecol Obstet Hum Reprod. 2017;46:637-42.

39. Lai HW, Chen ST, Chen DR, et al. Current trends in and indications for endoscopy-assisted breast surgery for breast cancer: results from a six-year study conducted by the taiwan endoscopic breast surgery cooperative group. PLoS One. 2016;11:e0150310.

40. Toesca A, Peradze N, Manconi A, et al. Robotic nipple-sparing mastectomy for the treatment of breast cancer: feasibility and safety study. Breast. 2017;31:51-6.

41. Filipe MD, de Bock E, Postma EL, et al. Robotic nipple-sparing mastectomy complication rate compared to traditional nipple-sparing mastectomy: a systematic review and meta-analysis. J Robot Surg. 2022;16:265-72.

42. Lai HW, Chen ST, Mok CW, et al. Robotic versus conventional nipple sparing mastectomy and immediate gel implant breast reconstruction in the management of breast cancer- a case control comparison study with analysis of clinical outcome, medical cost, and patient-reported cosmetic results. J Plast Reconstr Aesthet Surg. 2020;73:1514-25.

43. Lai HW, Chen DR, Liu LC, et al. Robotic versus conventional or endoscopic-assisted nipple-sparing mastectomy and immediate prosthesis breast reconstruction in the management of breast cancer: a prospectively designed multicenter trial comparing clinical outcomes, medical cost, and patient-reported outcomes (RCENSM-P). Ann Surg. 2024;279:138-46.

44. Lai HW, Chen ST, Tai CM, et al. Robotic- versus endoscopic-assisted nipple-sparing mastectomy with immediate prosthesis breast reconstruction in the management of breast cancer: a case-control comparison study with analysis of clinical outcomes, learning curve, patient-reported aesthetic results, and medical cost. Ann Surg Oncol. 2020;27:2255-68.

45. Garden EB, Al-Alao O, Razdan S, Mullen GR, Florman S, Palese MA. Robotic single-port donor nephrectomy with the da vinci sp® surgical system. JSLS. 2021;25:e2021.00062.

46. Park HS, Lee J, Lee H, Lee K, Song SY, Toesca A. Development of robotic mastectomy using a single-port surgical robot system. J Breast Cancer. 2020;23:107-12.

47. Go J, Ahn JH, Park JM, et al. Analysis of robot-assisted nipple-sparing mastectomy using the da Vinci SP system. J Surg Oncol. 2022;126:417-24.

48. Farr DE, Haddock NT, Tellez J, et al. Safety and feasibility of single-port robotic-assisted nipple-sparing mastectomy. JAMA Surg. 2024;159:269-76.

49. Bostwick J 3rd, Vasconez LO, Jurkiewicz MJ. Breast reconstruction after a radical mastectomy. Plast Reconstr Surg. 1978;61:682-93.

50. Lin CH, Wei FC, Levin LS, Chen MC. Donor-site morbidity comparison between endoscopically assisted and traditional harvest of free latissimus dorsi muscle flap. Plast Reconstr Surg. 1999;104:1070-7.

51. Miller MJ, Robb GL. Endoscopic technique for free flap harvesting. Clin Plast Surg. 1995;22:755-73.

52. Pomel C, Missana MC, Lasser P. [Endoscopic harvesting of the latissimus dorsi flap in breast reconstructive surgery. Feasibility study and review of the literature]. Ann Chir. 2002;127:337-42.

53. Fine NA, Orgill DP, Pribaz JJ. Early clinical experience in endoscopic-assisted muscle flap harvest. Ann Plast Surg. 1994;33:465-9.

54. Selber JC, Baumann DP, Holsinger CF. Robotic harvest of the latissimus dorsi muscle: laboratory and clinical experience. J Reconstr Microsurg. 2012;28:457-64.

55. Selber JC, Baumann DP, Holsinger FC. Robotic latissimus dorsi muscle harvest: a case series. Plast Reconstr Surg. 2012;129:1305-12.

56. Winocour S, Tarassoli S, Chu CK, Liu J, Clemens MW, Selber JC. Comparing outcomes of robotically assisted latissimus dorsi harvest to the traditional open approach in breast reconstruction. Plast Reconstr Surg. 2020;146:1221-5.

57. Eo PS, Kim H, Lee JS, Lee J, Park HY, Yang JD. Robot-assisted latissimus dorsi flap harvest for partial breast reconstruction: comparison with endoscopic and conventional approaches. Aesthet Surg J. 2023;44:38-46.

58. Chen K, Zhang J, Beeraka NM, Lu P. Robotic nipple sparing mastectomy and immediate breast reconstruction: significant attempts with the latissimus dorsi muscle without island flap. Minerva Surg. 2024;79:411-8.

59. Shuck J, Asaad M, Liu J, Clemens MW, Selber JC. Prospective pilot study of robotic-assisted harvest of the latissimus dorsi muscle: a 510(k) approval study with U.S. Food and Drug Administration investigational device exemption. Plast Reconstr Surg. 2022;149:1287-95.

60. von Glinski M, Holler N, Kümmel S, et al. The partner perspective on autologous and implant-based breast reconstruction. Aesthetic Plast Surg. 2023;47:1324-31.

61. Scheflan M, Hartrampf CR, Black PW. Breast reconstruction with a transverse abdominal island flap. Plast Reconstr Surg. 1982;69:908-9.

62. Speck NE, Grufman V, Farhadi J. Trends and innovations in autologous breast reconstruction. Arch Plast Surg. 2023;50:240-7.

63. Tønseth KA, Hokland BM, Tindholdt TT, Abyholm FE, Stavem K. Quality of life, patient satisfaction and cosmetic outcome after breast reconstruction using DIEP flap or expandable breast implant. J Plast Reconstr Aesthet Surg. 2008;61:1188-94.

64. Bruce JC, Batchinsky M, Van Spronsen NR, Sinha I, Bharadia D. Analysis of online materials regarding DIEP and TRAM flap autologous breast reconstruction. J Plast Reconstr Aesthet Surg. 2023;82:81-91.

65. Khan MTA, Won BW, Baumgardner K, et al. Literature review: robotic-assisted harvest of deep inferior epigastric flap for breast reconstruction. Ann Plast Surg. 2022;89:703-8.

66. Struk S, Sarfati B, Leymarie N, et al. Robotic-assisted DIEP flap harvest: a feasibility study on cadaveric model. J Plast Reconstr Aesthet Surg. 2018;71:259-61.

67. Manrique OJ, Bustos SS, Mohan AT, et al. Robotic-assisted DIEP flap harvest for autologous breast reconstruction: a comparative feasibility study on a cadaveric model. J Reconstr Microsurg. 2020;36:362-8.

68. Kurlander DE, Le-Petross HT, Shuck JW, Butler CE, Selber JC. Robotic DIEP patient selection: analysis of CT angiography. Plast Reconstr Surg Glob Open. 2021;9:e3970.

69. Lee MJ, Won J, Song SY, et al. Clinical outcomes following robotic versus conventional DIEP flap in breast reconstruction: a retrospective matched study. Front Oncol. 2022;12:989231.

70. Tsai CY, Kim BS, Kuo WL, et al. Novel port placement in robot-assisted DIEP flap harvest improves visibility and bilateral DIEP access: early controlled cohort study. Plast Reconstr Surg. 2023;152:590e-5e.

71. Moreira A, Bailey EA, Chen B, et al. A new era in perforator flap surgery for breast reconstruction: a comparative study of robotic versus standard harvest of bilateral deep inferior epigastric artery perforator flaps. J Reconstr Microsurg. 2024;Epub ahead of print.

72. Nelson W, Murariu D, Moreira AA. Indocyanine green-guided near-infrared fluorescence enhances vascular anatomy in robot-assisted DIEP flap harvest. Plast Reconstr Surg. 2024;153:796-8.

73. Elameen AM, Dahy AA. Surgical outcomes of robotic versus conventional autologous breast reconstruction: a systematic review and meta-analysis. J Robot Surg. 2024;18:189.

74. Jung JH, Jeon YR, Lee DW, et al. Initial report of extraperitoneal pedicle dissection in deep inferior epigastric perforator flap breast reconstruction using the da Vinci SP. Arch Plast Surg. 2022;49:34-8.

75. Selber JC. Transoral robotic reconstruction of oropharyngeal defects: a case series. Plast Reconstr Surg. 2010;126:1978-87.

76. O’Brien BM, Sykes P, Threlfall GN, Browning FS. Microlymphaticovenous anastomoses for obstructive lymphedema. Plast Reconstr Surg. 1977;60:197-211.

77. Koshima I, Inagawa K, Urushibara K, Moriguchi T. Supermicrosurgical lymphaticovenular anastomosis for the treatment of lymphedema in the upper extremities. J Reconstr Microsurg. 2000;16:437-42.

78. van Mulken TJM, Wolfs JAGN, Qiu SS, et al; MicroSurgical Robot Research Group. One-year outcomes of the first human trial on robot-assisted lymphaticovenous anastomosis for breast cancer-related lymphedema. Plast Reconstr Surg. 2022;149:151-61.

79. Teven CM, Yi J, Hammond JB, et al. Expanding the horizon: single-port robotic vascularized omentum lymphatic transplant. Plast Reconstr Surg Glob Open. 2021;9:e3414.

80. Weinzierl A, Barbon C, Gousopoulos E, et al. Benefits of robotic-assisted lymphatic microsurgery in deep anatomical planes. JPRAS Open. 2023;37:145-54.

81. Frieberg H, Winter JM, Engström O, Önefäldt D, Nilsson A, Mani M. Robot-assisted microsurgery-what does the learning curve look like? JPRAS Open. 2024;42:33-41.

82. Moglia A, Georgiou K, Georgiou E, Satava RM, Cuschieri A. A systematic review on artificial intelligence in robot-assisted surgery. Int J Surg. 2021;95:106151.

83. Sung JJY. Introduction to artificial intelligence in medicine. Singapore Med J. 2024;65:132.

84. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44-56.

85. Maier-Hein L, Vedula SS, Speidel S, et al. Surgical data science for next-generation interventions. Nat Biomed Eng. 2017;1:691-6.

86. Bajaj T, Koyner JL. Artificial intelligence in acute kidney injury prediction. Adv Chronic Kidney Dis. 2022;29:450-60.

87. Li S, Hickey GW, Lander MM, Kanwar MK. Artificial intelligence and mechanical circulatory support. Heart Fail Clin. 2022;18:301-9.

88. Zhou XY, Guo Y, Shen M, Yang GZ. Application of artificial intelligence in surgery. Front Med. 2020;14:417-30.

89. Ma R, Vanstrum EB, Lee R, Chen J, Hung AJ. Machine learning in the optimization of robotics in the operative field. Curr Opin Urol. 2020;30:808-16.

90. Kassahun Y, Yu B, Tibebu AT, et al. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int J Comput Assist Radiol Surg. 2016;11:553-68.

91. Moustris GP, Hiridis SC, Deliparaschos KM, Konstantinidis KM. Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int J Med Robot. 2011;7:375-92.

92. Panesar S, Cagle Y, Chander D, Morey J, Fernandez-Miranda J, Kliot M. Artificial intelligence and the future of surgical robotics. Ann Surg. 2019;270:223-6.

93. Knudsen JE, Ghaffar U, Ma R, Hung AJ. Clinical applications of artificial intelligence in robotic surgery. J Robot Surg. 2024;18:102.

94. Wang F, Sun X, Li J. Surgical smoke removal via residual Swin transformer network. Int J Comput Assist Radiol Surg. 2023;18:1417-27.

95. Eslamian S, Reisner LA, Pandya AK. Development and evaluation of an autonomous camera control algorithm on the da Vinci surgical system. Int J Med Robot. 2020;16:e2036.

96. Kumazu Y, Kobayashi N, Kitamura N, et al. Automated segmentation by deep learning of loose connective tissue fibers to define safe dissection planes in robot-assisted gastrectomy. Sci Rep. 2021;11:21198.

97. Marsden M, Weyers BW, Bec J, et al. Intraoperative margin assessment in oral and oropharyngeal cancer using label-free fluorescence lifetime imaging and machine learning. IEEE Trans Biomed Eng. 2021;68:857-68.

98. Bianchi L, Chessa F, Angiolini A, et al. The use of augmented reality to guide the intraoperative frozen section during robot-assisted radical prostatectomy. Eur Urol. 2021;80:480-8.

99. Azadi S, Green IC, Arnold A, Truong M, Potts J, Martino MA. Robotic surgery: the impact of simulation and other innovative platforms on performance and training. J Minim Invasive Gynecol. 2021;28:490-5.

100. Juarez-Villalobos L, Hevia-Montiel N, Perez-Gonzalez J. Machine learning based classification of local robotic surgical skills in a training tasks set. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:4596-9.

101. Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med. 2021;13:152.

102. Liao J, Gui Y, Li Z, et al. Artificial intelligence-assisted ultrasound image analysis to discriminate early breast cancer in Chinese population: a retrospective, multicentre, cohort study. EClinicalMedicine. 2023;60:102001.

103. Yoon JH, Strand F, Baltzer PAT, et al. Standalone AI for breast cancer detection at screening digital mammography and digital breast tomosynthesis: a systematic review and meta-analysis. Radiology. 2023;307:e222639.

104. Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749-62.

105. Zhao J, Sun Z, Yu Y, et al. Radiomic and clinical data integration using machine learning predict the efficacy of anti-PD-1 antibodies-based combinational treatment in advanced breast cancer: a multicentered study. J Immunother Cancer. 2023;11:e006514.

106. van de Sande D, Sharabiani M, Bluemink H, et al. Artificial intelligence based treatment planning of radiotherapy for locally advanced breast cancer. Phys Imaging Radiat Oncol. 2021;20:111-6.

107. Yu Y, He Z, Ouyang J, et al. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: a machine learning, multicenter study. EBioMedicine. 2021;69:103460.

108. Juwara L, Arora N, Gornitsky M, Saha-Chaudhuri P, Velly AM. Identifying predictive factors for neuropathic pain after breast cancer surgery using machine learning. Int J Med Inform. 2020;141:104170.

109. Lötsch J, Sipilä R, Dimova V, Kalso E. Machine-learned selection of psychological questionnaire items relevant to the development of persistent pain after breast cancer surgery. Br J Anaesth. 2018;121:1123-32.

110. Lou SJ, Hou MF, Chang HT, et al. Machine learning algorithms to predict recurrence within 10 years after breast cancer surgery: a prospective cohort study. Cancers. 2020;12:3817.

111. Mavioso C, Araújo RJ, Oliveira HP, et al. Automatic detection of perforators for microsurgical reconstruction. Breast. 2020;50:19-24.

112. O'Neill AC, Yang D, Roy M, Sebastiampillai S, Hofer SOP, Xu W. Development and evaluation of a machine learning prediction model for flap failure in microvascular breast reconstruction. Ann Surg Oncol. 2020;27:3466-75.

113. Soh CL, Shah V, Arjomandi Rad A, et al. Present and future of machine learning in breast surgery: systematic review. Br J Surg. 2022;109:1053-62.

114. Cheng Z, Jin Y, Li J, et al. Fibronectin-targeting and metalloproteinase-activatable smart imaging probe for fluorescence imaging and image-guided surgery of breast cancer. J Nanobiotechnology. 2023;21:112.

115. Welleweerd MK, Siepel FJ, Groenhuis V, Veltman J, Stramigioli S. Design of an end-effector for robot-assisted ultrasound-guided breast biopsies. Int J Comput Assist Radiol Surg. 2020;15:681-90.

116. Duarte B, Oliveira B, Torres HR, Morais P, Fonseca JC, Vilaca JL. Robust 3D breast reconstruction based on monocular images and artificial intelligence for robotic guided oncological interventions. Annu Int Conf IEEE Eng Med Biol Soc. 2023;2023:1-4.

117. Peng C, Zhang Y, Meng Y, et al. LMA-Net: a lesion morphology aware network for medical image segmentation towards breast tumors. Comput Biol Med. 2022;147:105685.

118. Alqaoud M, Plemmons J, Feliberti E, et al. nnUNet-based multi-modality breast mri segmentation and tissue-delineating phantom for robotic tumor surgery planning. Annu Int Conf IEEE Eng Med Biol Soc. 2022;2022:3495-501.

119. Fiorini P, Goldberg KY, Liu Y, Taylor RH. Concepts and trends n autonomy for robot-assisted surgery. Proc IEEE Inst Electr Electron Eng. 2022;110:993-1011.

120. Kitaguchi D, Takeshita N, Hasegawa H, Ito M. Artificial intelligence-based computer vision in surgery: recent advances and future perspectives. Ann Gastroenterol Surg. 2022;6:29-36.

121. Bao R, Tao J, Zhao J, Dong M, Li J, Pan C. Integrated intelligent tactile system for a humanoid robot. Sci Bull. 2023;68:1027-37.

122. Guo X, McFall F, Jiang P, Liu J, Lepora N, Zhang D. A lightweight and affordable wearable haptic controller for robot-assisted microsurgery. Sensors. 2024;24:2676.

123. Orosco RK, Lurie B, Matsuzaki T, et al. Compensatory motion scaling for time-delayed robotic surgery. Surg Endosc. 2021;35:2613-8.

Plastic and Aesthetic Research
ISSN 2349-6150 (Online)   2347-9264 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/