REFERENCES
1. Saber AY, Hohman HM, Dreyer MA. Basic flap design. Available from: https://www.ncbi.nlm.nih.gov/books/NBK563252/ [Last accessed on 19 Jun 2023].
2. Wolff KD. New aspects in free flap surgery: Mini-perforator flaps and extracorporeal flap perfusion. J Stomatol Oral Maxillofac Surg 2017;118:238-41.
3. Cen H, Jin R, Yu M, Weng T. Clinical decision model for the reconstruction of 175 cases of scalp avulsion/defect. Am J Otolaryngol 2021;42:102752.
4. Neusner AD, Pribaz JJ, Guo L. Free your mind, not your flap. Plast Reconstr Surg Glob Open 2022;10:e4384.
5. Wong AK, Joanna Nguyen T, Peric M, et al. Analysis of risk factors associated with microvascular free flap failure using a multi-institutional database. Microsurgery 2015;35:6-12.
6. Crawley MB, Sweeny L, Ravipati P, et al. Factors Associated with free flap failures in head and neck reconstruction. Otolaryngol Head Neck Surg 2019;161:598-604.
7. Kalmar CL, Drolet BC, Kassis S, Thayer WP, Higdon KK, Perdikis G. Breast reconstruction free flap failure: does platelet count matter? Ann Plast Surg 2022;89:523-8.
8. Novakovic D, Patel RS, Goldstein DP, Gullane PJ. Salvage of failed free flaps used in head and neck reconstruction. Head Neck Oncol 2009;1:33.
9. Sharp O, Masud D. Breast reconstruction with immediate autologous free tissue transfer in a peri-operative COVID-19 positive patient: a case report illustrating feasibility of aftercare. J Plast Reconstr Aesthet Surg 2021;74:644-710.
10. Billig JI, Lu Y, Momoh AO, Chung KC. A nationwide analysis of cost variation for autologous free flap breast reconstruction. JAMA Surg 2017;152:1039-47.
11. Dassonville O, Bozec A, Château Y, et al. Multicenter prospective micro-costing study evaluating mandibular free-flap reconstruction. Eur Arch Otorhinolaryngol 2017;274:1103-11.
12. Vonlanthen R, Slankamenac K, Breitenstein S, et al. The impact of complications on costs of major surgical procedures: a cost analysis of 1,200 patients. Ann Surg 2011;254:907-13.
13. Smit JM, Zeebregts CJ, Acosta R, Werker PMN. Advancements in free flap monitoring in the last decade: a critical review. Plast Reconstr Surg 2010;125:177-85.
14. Hauge EM, Balling E, Hartmund T, Hjortdal VE. Secondary ischemia caused by venous or arterial occlusion shows differential effects on myocutaneous island flap survival and muscle ATP levels. Plast Reconstr Surg 1997;99:825-33.
15. Kerrigan CL, Wizman P, Hjortdal VE, Sampalis J. Global flap ischemia: a comparison of arterial versus venous etiology. Plast Reconstr Surg 1994;93:1485-97.
16. Kwok AC, Agarwal JP. An analysis of free flap failure using the ACS NSQIP database. does flap site and flap type matter? Microsurgery 2017;37:531-8.
17. Kroll SS, Schusterman MA, Reece GP, et al. Timing of pedicle thrombosis and flap loss after free-tissue transfer. Plast Reconstr Surg 1996;98:1230-3.
18. Wang W, Ong A, Vincent AG, Shokri T, Scott B, Ducic Y. Flap failure and salvage in head and neck reconstruction. Semin Plast Surg 2020;34:314-20.
19. Yang Q, Ren ZH, Chickooree D, et al. The effect of early detection of anterolateral thigh free flap crisis on the salvage success rate, based on 10 years of experience and 1072 flaps. Int J Oral Maxillofac Surg 2014;43:1059-63.
20. Brown JS, Devine JC, Magennis P, Sillifant P, Rogers SN, Vaughan ED. Factors that influence the outcome of salvage in free tissue transfer. Br J Oral Maxillofac Surg 2003;41:16-20.
21. Liu EH, Zhu SL, Hu J, Wong N, Farrokhyar F, Thoma A. Intraoperative SPY reduces post-mastectomy skin flap complications: a systematic review and meta-analysis. Plast Reconstr Surg Glob Open 2019;7:e2060.
22. Hirigoyen MB, Urken ML, Weinberg H. Free flap monitoring: a review of current practice. Microsurgery 1995;16:723-7.
23. Hidalgo DA, Disa JJ, Cordeiro PG, Hu QY. A review of 716 consecutive free flaps for oncologic surgical defects: refinement in donor-site selection and technique. Plast Reconstr Surg 1998;102:722-34.
24. Okazaki M, Asato H, Takushima A, et al. Analysis of salvage treatments following the failure of free flap transfer caused by vascular thrombosis in reconstruction for head and neck cancer. Plast Reconstr Surg 2007;119:1223-32.
25. Kroll SS, Schusterman MA, Reece GP, et al. Choice of flap and incidence of free flap success. Plast Reconstr Surg 1996;98:459-63.
26. Baltodano P, Schalet GN, Aliu O, et al. Abstract P1. A national data-driven approach to optimizing monitoring of autologous breast free flap reconstruction: analysis of 3,666 patients. Plast Reconstr Surg Glob Open 2017;5:1.
27. Martinez CA, Boutros SG. Outpatient microsurgical breast reconstruction. Plast Reconstr Surg Glob Open 2020;8:e3109.
28. Mashrah MA, Aldhohrah T, Abdelrehem A, et al. Postoperative care in ICU versus non-ICU after head and neck free-flap surgery: a systematic review and meta-analysis. BMJ Open 2022;12:e053667.
29. Abouyared M, Katz AP, Ein L, et al. Controversies in free tissue transfer for head and neck cancer: a review of the literature. Head Neck 2019;41:3457-63.
30. Kim TH, Park JH. A novel negative pressure wound therapy (NPWT) monitoring system for postoperative flap management. Medicine 2021;100:e27671.
31. Tan YZ, Lu X, Luo J, et al. Enhanced recovery after surgery for breast reconstruction: pooled meta-analysis of 10 observational studies involving 1,838 patients. Front Oncol 2019;9:675.
32. Koolen PGL, Vargas CR, Ho OA, et al. Does increased experience with tissue oximetry monitoring in microsurgical breast reconstruction lead to decreased flap loss? the learning effect. Plast Reconstr Surg 2016;137:1093-101.
33. Kohler LH, Köhler H, Kohler S, et al. Hyperspectral imaging (HSI) as a new diagnostic tool in free flap monitoring for soft tissue reconstruction: a proof of concept study. BMC Surg 2021;21:222.
34. Setala L, Gudaviciene D. Glucose and lactate metabolism in well-perfused and compromised microvascular flaps. J Reconstr Microsurg 2013;29:505-10.
35. Bui DT, Cordeiro PG, Hu QY, Disa JJ, Pusic A, Mehrara BJ. Free flap reexploration: indications, treatment, and outcomes in 1193 free flaps. Plast Reconstr Surg 2007;119:2092-100.
36. Salgado CJ, Chim H, Schoenoff S, Mardini S. Postoperative care and monitoring of the reconstructed head and neck patient. Semin Plast Surg 2010;24:281-7.
37. Becattini C, Agnelli G. Aspirin for prevention and treatment of venous thromboembolism. Blood Rev 2014;28:103-8.
38. Nazir H, Lowe D, Rogers SN. Patients’ experience of the monitoring of free flaps after reconstruction for oral cancer. Br J Oral Maxillofac Surg 2017;55:1008-12.
39. Hwang J, Mun GH. An evolution of communication in postoperative free flap monitoring: using a smartphone and mobile messenger application. Plast Reconstr Surg 2012;130:125-9.
40. Bickler PE, Feiner JR, Severinghaus JW. Effects of skin pigmentation on pulse oximeter accuracy at low saturation. Anesthesiology 2005;102:715-9.
41. Feiner JR, Severinghaus JW, Bickler PE. Dark skin decreases the accuracy of pulse oximeters at low oxygen saturation: the effects of oximeter probe type and gender. Anesth Analg 2007;105:S18-23.
42. Rosenberg JJ, Fornage BD, Chevray PM. Monitoring buried free flaps: limitations of the implantable doppler and use of color duplex sonography as a confirmatory test. Plast Reconstr Surg 2006;118:109-15.
43. Bai W, Guo H, Ouyang W, et al. Intramuscular near-infrared spectroscopy for muscle flap monitoring in a porcine model. J Reconstr Microsurg 2022;38:321-7.
44. Thiem DGE, Römer P, Blatt S, Al-Nawas B, Kämmerer PW. New approach to the old challenge of free flap monitoring-hyperspectral imaging outperforms clinical assessment by earlier detection of perfusion failure. J Pers Med 2021;11:1101.
45. Halani SH, Hembd AS, Li X, et al. Flap monitoring using transcutaneous oxygen or carbon dioxide measurements. J Hand Microsurg 2022;14:10-8.
46. Wu C, Rwei AY, Lee JY, et al. A wireless near-infrared spectroscopy device for flap monitoring: proof of concept in a porcine musculocutaneous flap model. J Reconstr Microsurg 2022;38:96-105.
47. Lartizien R, Planat-Chrétien A, Berger M, et al. Noninvasive monitoring of deep tissue oxygenation in buried flaps by time-resolved near-infrared spectroscopy in pigs. Plast Reconstr Surg 2020;146:565e-77e.
48. Kwasnicki RM, Noakes AJ, Banhidy N, Hettiaratchy S. Quantifying the limitations of clinical and technology-based flap monitoring strategies using a systematic thematic analysis. Plast Reconstr Surg Glob Open 2021;9:e3663.
49. Gurtner GC, Jones GE, Neligan PC, et al. Intraoperative laser angiography using the SPY system: review of the literature and recommendations for use. Ann Surg Innov Res 2013;7:1.
50. Heller L, Levin LS, Klitzman B. Laser doppler flowmeter monitoring of free-tissue transfers: blood flow in normal and complicated cases. Plast Reconstr Surg 2001;107:1739-45.
51. Bulstrode NW, Wilson GR, Inglis MS. No-touch free-flap temperature monitoring. Br J Plast Surg 2002;55:174.
52. Hallock GG. Attributes and shortcomings of acoustic doppler sonography in identifying perforators for flaps from the lower extremity. J Reconstr Microsurg 2009;25:377-81.
53. Hallock GG. Doppler sonography and color duplex imaging for planning a perforator flap. Clin Plast Surg 2003;30:347-57.
54. Hallock GG. Acoustic Doppler sonography, color duplex ultrasound, and laser doppler flowmetry as tools for successful autologous breast reconstruction. Clin Plast Surg 2011;38:203-11.
55. Knobloch K, Gohritz A, Reuss E, Redeker J, Spies M, Vogt PM. Preoperative perforator imaging in reconstructive plastic surgery: current practice in Germany. Plast Reconstr Surg 2009;124:183e-4e.
56. Micheels J, Alsbjorn B, Sorensen B. Laser doppler flowmetry. a new non-invasive measurement of microcirculation in intensive care? Resuscitation 1984;12:31-9.
57. Clinton MS, Sepka RS, Bristol D, et al. Establishment of normal ranges of laser Doppler blood flow in autologous tissue transplants. Plast Reconstr Surg 1991;87:299-309.
58. Jenkins SD, Sepka RS, Barwick WJ, Serafin D, Klitzman B. Routine clinical use of laser Doppler flowmeter to monitor free tissue transfer: preliminary results. J Reconstr Microsurg 1987;3:281-3.
59. Luck JC, Kunselman AR, Herr MD, Blaha CA, Sinoway LI, Cui J. Multiple laser doppler flowmetry probes increase the reproducibility of skin blood flow measurements. Front Physiol 2022;13:876633.
60. Hallock GG. Color duplex imaging for identifying perforators prior to pretransfer expansion of fasciocutaneous free flaps. Ann Plast Surg 1994;32:595-601.
61. Hong JP, Hur J, Kim HB, Park CJ, Suh HP. The use of color duplex ultrasound for local perforator flaps in the extremity. J Reconstr Microsurg 2022;38:233-7.
62. Schwabegger AH, Bodner G, Rieger M, Jaschke WR, Ninković MM. Internal mammary vessels as a model for power doppler imaging of recipient vessels in microsurgery. Plast Reconstr Surg 1999;104:1656-65.
63. Khouri RK, Shaw WW. Monitoring of free flaps with surface-temperature recordings: is it reliable? Plast Reconstr Surg 1992;89:495-502.
64. Kraemer R, Lorenzen J, Knobloch K, et al. Free flap microcirculatory monitoring correlates to free flap temperature assessment. J Plast Reconstr Aesthet Surg 2011;64:1353-8.
65. Papillion P, Wong L, Waldrop J, et al. Infrared surface temperature monitoring in the postoperative management of free tissue transfers. Can J Plast Surg 2009;17:97-101.
66. Chiu ES, Altman A, Allen RJ Jr, Allen RJ Sr. Free flap monitoring using skin temperature strip indicators: adjunct to clinical examination. Plast Reconstr Surg 2008;122:144e-5e.
67. Rabbani MJ, Bhatti AZ, Shahzad A. Flap monitoring using thermal imaging camera: a contactless method. J Coll Physicians Surg Pak 2021;30:703-6.
68. Chang K, Yoon S, Sheth N, et al. Rapid
69. Salgado CJ, Moran SL, Mardini S. Flap monitoring and patient management. Plast Reconstr Surg 2009;124:e295-302.
71. Dam H, Nduka C, Carver N. No touch free-flap temperature monitoring. Br J Plast Surg 2003;56:835.
72. Ricci JA, Vargas CR, Lin SJ, Tobias AM, Taghinia AH, Lee BT. A novel free flap monitoring system using tissue oximetry with text message alerts. J Reconstr Microsurg 2016;32:415-20.
73. Engel H, Huang JJ, Tsao CK, et al. Remote real-time monitoring of free flaps via smartphone photography and 3G wireless internet: a prospective study evidencing diagnostic accuracy. Microsurgery 2011;31:589-95.
74. Semple JL, Sharpe S, Murnaghan ML, Theodoropoulos J, Metcalfe KA. Using a mobile app for monitoring post-operative quality of recovery of patients at home: a feasibility study. JMIR Mhealth Uhealth 2015;3:e18.
75. Yuen JC. Enabling Remote monitoring using free apps and smart devices for a free-flap adjunct monitor. Plast Reconstr Surg Glob Open 2017;5:e1507.
76. Kiranantawat K, Sitpahul N, Taeprasartsit P, et al. The first smartphone application for microsurgery monitoring: silpaRamanitor. Plast Reconstr Surg 2014;134:130-9.
77. Provenzano D, Chandawarkar A, Caterson E. Abstract QS14: novel smartphone-based free flap monitoring tool using machine learning. Plast Reconstr Surg Glob Open 2019;7:111-2.
78. Phillips CJ, Barron MR, Kuckelman J, et al. Mobile smartphone thermal imaging characterization and identification of microvascular flow insufficiencies in deep inferior epigastric artery perforator free flaps. J Surg Res 2021;261:394-9.
79. Zaman T, Kyriacou PA, Pal SK. Free flap pulse oximetry utilizing reflectance photoplethysmography. Annu Int Conf IEEE Eng Med Biol Soc 2013;2013:4046-9.
80. Keller A. Noninvasive tissue oximetry for flap monitoring: an initial study. J Reconstr Microsurg 2007;23:189-97.
81. Menick FJ. The pulse oximeter in free muscle flap surgery. “a microvascular surgeon's sleep aid”. J Reconstr Microsurg 1988;4:331-4.
82. Hallock GG, Rice DC. A comparison of pulse oximetry and laser doppler flowmetry in monitoring sequential vascular occlusion in a rabbit ear model. Can J Plast Surg 2003;11:11-4.
83. Lin SJ, Nguyen MD, Chen C, et al. Tissue oximetry monitoring in microsurgical breast reconstruction decreases flap loss and improves rate of flap salvage. Plast Reconstr Surg 2011;127:1080-5.
84. Lohman RF, Langevin CJ, Bozkurt M, Kundu N, Djohan R. A prospective analysis of free flap monitoring techniques: physical examination, external Doppler, implantable Doppler, and tissue oximetry. J Reconstr Microsurg 2013;29:51-6.
85. Ozturk CN, Ozturk C, Ledinh W, et al. Variables affecting postoperative tissue perfusion monitoring in free flap breast reconstruction. Microsurgery 2015;35:123-8.
86. Keller A. A new diagnostic algorithm for early prediction of vascular compromise in 208 microsurgical flaps using tissue oxygen saturation measurements. Ann Plast Surg 2009;62:538-43.
87. Kovalenko B, Roskosky B, Freedman BA, Shuler MS. Effect of ambient light on near infrared spectroscopy. Available from: https://www.semanticscholar.org/paper/Effect-of-Ambient-Light-on-Near-Infrared-Kovalenko-Roskosky/b8c2924e0008466beb67d41b18af5809aad9ef77. [Last accessed on 25 Jul 2023].
88. Lindelauf AAMA, Vranken NPA, Rutjens VGH, et al. Economic analysis of noninvasive tissue oximetry for postoperative monitoring of deep inferior epigastric perforator flap breast reconstruction: a review. Surg Innov 2020;27:534-42.
89. Johnson BM, Cullom ME, Egan KG, et al. Comparing tissue oximetry to doppler monitoring in 1,367 consecutive breast free flaps. Microsurgery 2023;43:57-62.
90. Lu D, Moritz W, Arafa HM, et al. Intramuscular microvascular flow sensing for flap monitoring in a porcine model of arterial and venous occlusion. J Reconstr Microsurg 2023;39:231-7.
91. Ricci JA, Vargas CR, Ho OA, Lin SJ, Tobias AM, Lee BT. Evaluating the use of tissue oximetry to decrease intensive unit monitoring for free flap breast reconstruction. Ann Plast Surg 2017;79:42-6.
92. Swartz WM JN, Cherup L, Klein A. Direct monitoring of microvascular anastomoses with the 20-MHZ ultrasonic doppler probe: an experimental and clinical study. Plast Reconstr Surg 1988;81:149-58.
93. Chadwick SL, Khaw R, Duncan J, Wilson SW, Highton L, O’Ceallaigh S. The use of venous anastomotic flow couplers to monitor buried free DIEP flap reconstructions following nipple-sparing mastectomy. JPRAS Open 2020;23:50-4.
94. Smit JM, Whitaker IS, Liss AG, Audolfsson T, Kildal M, Acosta R. Post operative monitoring of microvascular breast reconstructions using the implantable cook-swartz doppler system: a study of 145 probes & technical discussion. J Plast Reconstr Aesthet Surg 2009;62:1286-92.
95. Rozen WM, Ang GG, McDonald AH, et al. Sutured attachment of the implantable doppler probe cuff for large or complex pedicles in free tissue transfer. J Reconstr Microsurg 2011;27:99-102.
96. Hayler R, Low TH, Fung K, Nichols AC, MacNeil SD, Yoo J. Implantable doppler ultrasound monitoring in head and neck free flaps: balancing the pros and cons. Laryngoscope 2021;131:E1854-9.
97. Um GT, Chang J, Louie O, et al. Implantable cook-swartz doppler probe versus Synovis flow coupler for the post-operative monitoring of free flap breast reconstruction. J Plast Reconstr Aesthet Surg 2014;67:960-6.
98. Kempton SJ, Poore SO, Chen JT, Afifi AM. Free flap monitoring using an implantable anastomotic venous flow coupler: analysis of 119 consecutive abdominal-based free flaps for breast reconstruction. Microsurgery 2015;35:337-44.
99. Frost MW, Niumsawatt V, Rozen WM, Eschen GE, Damsgaard TE, Kiil BJ. Direct comparison of postoperative monitoring of free flaps with microdialysis, implantable cook-swartz doppler probe, and clinical monitoring in 20 consecutive patients. Microsurgery 2015;35:262-71.
100. Hosein RC, Cornejo A, Wang HT. Postoperative monitoring of free flap reconstruction: a comparison of external doppler ultrasonography and the implantable doppler probe. Plast Surg 2016;24:11-9.
101. Hirigoyen MB, Blackwell KE, Zhang WX, Silver L, Weinberg H, Urken ML. Continuous tissue oxygen tension measurement as a monitor of free-flap viability. Plast Reconstr Surg 1997;99:763-73.
102. Gosain A, Rabkin J, Reymond JP, Jensen JA, Hunt TK, Upton RA. Tissue oxygen tension and other indicators of blood loss or organ perfusion during graded hemorrhage. Surgery 1991;109:523-32.
103. Gottrup F, Firmin R, Chang N, Goodson WH 3rd, Hunt TK. Continuous direct tissue oxygen tension measurement by a new method using an implantable silastic tonometer and oxygen polarography. Am J Surg 1983;146:399-403.
104. Trignano E, Fallico N, Fiorot L, et al. Flap monitoring with continuous oxygen partial tension measurement in breast reconstructive surgery: a preliminary report. Microsurgery 2018;38:402-6.
105. Clark LC Jr. Measurement of oxygen tension: a historical perspective. Crit Care Med 1981;9:690-2.
106. Liss AG, Liss P. Use of a modified oxygen microelectrode and laser-doppler flowmetry to monitor changes in oxygen tension and microcirculation in a flap. Plast Reconstr Surg 2000;105:2072-8.
107. Hunt TK, Rabkin J, Jensen JA, Jonsson K, von Smitten K, Goodson WH 3rd. Tissue oximetry: an interim report. World J Surg 1987;11:126-32.
108. Chang N, Goodson WH 3rd, Gottrup F, Hunt TK. Direct measurement of wound and tissue oxygen tension in postoperative patients. Ann Surg 1983;197:470-8.
109. Gottrup F, Firmin R, Hunt TK, Mathes SJ. The dynamic properties of tissue oxygen in healing flaps. Surgery 1984;95:527-36.
110. Schrey A, Niemi T, Kinnunen I, et al. The limitations of tissue-oxygen measurement and positron emission tomography as additional methods for postoperative breast reconstruction free-flap monitoring. J Plast Reconstr Aesthet Surg 2010;63:314-21.
111. Mccraw JB, Myers B, Shanklin KD. The value of fluorescein in predicting the viability of arterialized flaps. Plast Reconstr Surg 1977;60:710-9.
112. Adelsberger R, Fakin R, Mirtschink S, Forster N, Giovanoli P, Lindenblatt N. Bedside monitoring of free flaps using ICG-fluorescence angiography significantly improves detection of postoperative perfusion impairment#. J Plast Surg Hand Surg 2019;53:149-54.
113. Nagata T, Masumoto K, Uchiyama Y, et al. Improved technique for evaluating oral free flaps by pinprick testing assisted by indocyanine green near-infrared fluorescence angiography. J Craniomaxillofac Surg 2014;42:1112-6.
114. Hitier M, Cracowski JL, Hamou C, Righini C, Bettega G. Indocyanine green fluorescence angiography for free flap monitoring: a pilot study. J Craniomaxillofac Surg 2016;44:1833-41.
115. Su CT, Im MJ, Hoopes JE. Tissue glucose and lactate following vascular occlusion in island skin flaps. Plast Reconstr Surg 1982;70:202-5.
116. Bashir MM, Tayyab Z, Afzal S, Khan FA. Diagnostic accuracy of blood glucose measurements in detecting venous compromise in flaps. J Craniofac Surg 2015;26:1492-4.
117. Karakawa R, Yoshimatsu H, Narushima M, Iida T. Ratio of blood glucose level change measurement for flap monitoring. Plast Reconstr Surg Glob Open 2018;6:e1851.
118. Dickson MG, Sharpe DT. Continuous subcutaneous tissue pH measurement as a monitor of blood flow in skin flaps: an experimental study. Br J Plast Surg 1985;38:39-42.
119. Sakakibara S, Hashikawa K, Omori M, Terashi H, Tahara S. A simplest method of flap monitoring. J Reconstr Microsurg 2010;26:433-4.
120. Hara H, Mihara M, Iida T, et al. Blood glucose measurement for flap monitoring to salvage flaps from venous thrombosis. J Plast Reconstr Aesthet Surg 2012;65:616-9.
121. Henault B, Pluvy I, Pauchot J, Sinna R, Labruère-Chazal C, Zwetyenga N. Capillary measurement of lactate and glucose for free flap monitoring. Ann Chir Plast Esthet 2014;59:15-21.
122. Sitzman TJ, Hanson SE, King TW, Gutowski KA. Detection of flap venous and arterial occlusion using interstitial glucose monitoring in a rodent model. Plast Reconstr Surg 2010;126:71-9.
123. Zhang C, Wang Q, Wu L, Wang J, Zhao S, Wang J. Continuous interstitial glucose measurement for flap venous occlusion monitoring in a diabetic model. J Craniofac Surg 2022;33:2698-703.
124. Giatsidis G. Discussion: flap blood glucose as a sensitive and specific indicator for flap venous congestion: a rodent model study. Plast Reconstr Surg 2019;144:419e-20e.
125. Mochizuki K, Mochizuki M, Gonda K. Flap blood glucose as a sensitive and specific indicator for flap venous congestion: a rodent model study. Plast Reconstr Surg 2019;144:409e-18e.
126. Sommer T. Microdialysis of the bowel: the possibility of monitoring intestinal ischemia. Expert Rev Med Devices 2005;2:277-86.
127. Dakpé S, Colin E, Bettoni J, et al. Intraosseous microdialysis for bone free flap monitoring in head and neck reconstructive surgery: a prospective pilot study. Microsurgery 2020;40:315-23.
128. Udesen A, Løntoft E, Kristensen SR. Monitoring of free TRAM flaps with microdialysis. J Reconstr Microsurg 2000;16:101-6.
129. Röjdmark J, Blomqvist L, Malm M, Adams-Ray B, Ungerstedt U. Metabolism in myocutaneous flaps studied by in situ microdialysis. Scand J Plast Reconstr Surg Hand Surg 1998;32:27-34.
130. Jyränki J, Suominen S, Vuola J, Bäck L. Microdialysis in clinical practice: monitoring intraoral free flaps. Ann Plast Surg 2006;56:387-93.
131. Top H, Sarikaya A, Aygit AC, Benlier E, Kiyak M. Review of monitoring free muscle flap transfers in reconstructive surgery: role of 99mTc sestamibi scintigraphy. Nucl Med Commun 2006;27:91-8.
132. Aygit AC, Sarikaya A. Technetium 99m sestamibi scintigraphy for noninvasive assessment of muscle flap viability. Ann Plas Surg 1999;43:338-40.
133. Sarikaya A, Aygit AC. Combined 99mTc MDP bone SPECT and 99mTc sestamibi muscle SPECT for assessment of bone regrowth and free muscle flap viability in an electrical burn of scalp. Burns 2003;29:385-8.
134. Prantl L, Fellner C, Jung ME. Evaluation of free flap perfusion with dynamic contrast-enhanced magnetic resonance imaging. Plast Reconstr Surg 2010;126:100e-1e.
135. Fellner C, Jung EM, Prantl L. Dynamic contrast-enhanced MRI as a valuable non-invasive tool to evaluate tissue perfusion of free flaps: preliminary results. Clin Hemorheol Microcirc 2010;46:77-87.
136. Lee C, Chen C, Wang H, Chen L, Perng C. Utilizing mask RCNN for monitoring postoperative free flap: circulatory compromise detection based on visible-light and infrared images. IEEE Access 2022;10:109510-25.
137. Lee C, Chen C, Hsu F, et al. A postoperative free flap monitoring system: circulatory compromise detection based on visible-light image. IEEE Access 2022;10:4649-65.
138. Matsui C, Lao WW, Tanaka T, et al. Real-time assessment of free flap capillary circulation using videocapillaroscopy. Plast Reconstr Surg 2022;150:407-13.
139. Bucknor A, Kamali P, Maylar M, et al. Abstract 126: Improving post-operative monitoring of autologous breast reconstruction: a novel, oxygen-sensing liquid bandage first-in-human trial. Prs-Glob Open 2018;6:98-9.