1. Buch VH, Ahmed I, Maruthappu M. Artificial intelligence in medicine: current trends and future possibilities. Br J Gen Pract 2018;68:143-4.
2. Saba L, Biswas M, Kuppili V, et al. The present and future of deep learning in radiology. Eur J Radiol 2019;114:14-24.
3. Contreras I, Vehi J. Artificial intelligence for diabetes management and decision support: literature review. J Med Internet Res 2018;20:e10775.
4. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-8.
5. Chen Z, Zhang Y, Yan Z, et al. Artificial intelligence assisted display in thoracic surgery: development and possibilities. J Thorac Dis 2021;13:6994-7005.
6. Saposnik G, Redelmeier D, Ruff CC, Tobler PN. Cognitive biases associated with medical decisions: a systematic review. BMC Med Inform Decis Mak 2016;16:138.
7. Kurmis AP, Ianunzio JR. Artificial intelligence in orthopedic surgery: evolution, current state and future directions. Arthroplasty 2022;4:9.
8. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med 2019;380:1347-58.
9. Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. eDoctor: machine learning and the future of medicine. J Intern Med 2018;284:603-19.
10. Kanevsky J, Corban J, Gaster R, Kanevsky A, Lin S, Gilardino M. Big data and machine learning in plastic surgery: a new frontier in surgical innovation. Plast Reconstr Surg 2016;137:890e-7e.
11. Schwarzer G, Vach W, Schumacher M. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Statist Med 2000;19:541-61.
12. Lee JG, Jun S, Cho YW, et al. Deep learning in medical imaging: general overview. Korean J Radiol 2017;18:570-84.
13. Nadkarni PM, Ohno-Machado L, Chapman WW. Natural language processing: an introduction. J Am Med Inform Assoc 2011;18:544-51.
14. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019;25:44-56.
15. Patel R, Tseng CC, Choudhry HS, Lemdani MS, Talmor G, Paskhover B. Applying machine learning to determine popular patient questions about mentoplasty on social media. Aesthetic Plast Surg 2022;46:2273-9.
16. Levites HA, Thomas AB, Levites JB, Zenn MR. The use of emotional artificial intelligence in plastic surgery. Plast Reconstr Surg 2019;144:499-504.
17. Boczar D, Sisti A, Oliver JD, et al. Artificial intelligent virtual assistant for plastic surgery patient’s frequently asked questions: a pilot study. Ann Plast Surg 2020;84:e16-21.
18. Chartier C, Watt A, Lin O, Chandawarkar A, Lee J, Hall-Findlay E. BreastGAN: artificial intelligence-enabled breast augmentation simulation. Aesthet Surg J Open Forum 2022;4:ojab052.
19. Chinski H, Lerch R, Tournour D, Chinski L, Caruso D. An artificial intelligence tool for image simulation in rhinoplasty. Facial Plast Surg 2022;38:201-6.
20. Gunes H, Piccardi M. Assessing facial beauty through proportion analysis by image processing and supervised learning. Int J Hum Comput Stud 2006;64:1184-99.
21. Crystal DT, Cuccolo NG, Ibrahim AMS, Furnas H, Lin SJ. Photographic and video deepfakes have arrived: how machine learning may influence plastic surgery. Plast Reconstr Surg 2020;145:1079-86.
22. Phillips M, Marsden H, Jaffe W, et al. Assessment of accuracy of an artificial intelligence algorithm to detect melanoma in images of skin lesions. JAMA Netw Open 2019;2:e1913436.
23. Mendoza CS, Safdar N, Okada K, Myers E, Rogers GF, Linguraru MG. Personalized assessment of craniosynostosis via statistical shape modeling. Med Image Anal 2014;18:635-46.
24. Bhalodia R, Dvoracek LA, Ayyash AM, Kavan L, Whitaker R, Goldstein JA. Quantifying the severity of metopic craniosynostosis: a pilot study application of machine learning in craniofacial surgery. J Craniofac Surg 2020;31:697-701.
25. Ferry Q, Steinberg J, Webber C, et al. Diagnostically relevant facial gestalt information from ordinary photos. Elife 2014;3:e02020.
26. Kiranantawat K, Sitpahul N, Taeprasartsit P, et al. The first smartphone application for microsurgery monitoring: silpaRamanitor. Plast Reconstr Surg 2014;134:130-9.
27. Shademan A, Decker RS, Opfermann JD, Leonard S, Krieger A, Kim PC. Supervised autonomous robotic soft tissue surgery. Sci Transl Med 2016;8:337ra64.
28. Li Y, Cheng J, Mei H, Ma H, Chen Z, Li Y. CLPNet: cleft lip and palate surgery support with deep learning. Annu Int Conf IEEE Eng Med Biol Soc 2019;2019:3666-72.
29. Turner AE, Abu-Ghname A, Davis MJ, Ali K, Winocour S. Role of simulation and artificial intelligence in plastic surgery training. Plast Reconstr Surg 2020;146:390e-1e.
30. Grenda TR, Pradarelli JC, Dimick JB. Using surgical video to improve technique and skill. Ann Surg 2016;264:32-3.
31. Robnik-šikonja M, Cukjati D, Kononenko I. Comprehensible evaluation of prognostic factors and prediction of wound healing. Artif Intell Med 2003;29:25-38.
32. Yeong EK, Hsiao TC, Chiang HK, Lin CW. Prediction of burn healing time using artificial neural networks and reflectance spectrometer. Burns 2005;31:415-20.
33. Estahbanati HK, Bouduhi N. Role of artificial neural networks in prediction of survival of burn patients-a new approach. Burns 2002;28:579-86.
34. Kuo PJ, Wu SC, Chien PC, et al. Artificial neural network approach to predict surgical site infection after free-flap reconstruction in patients receiving surgery for head and neck cancer. Oncotarget 2018;9:13768-82.
35. Liao H, Yan Y, Dai W, Fan P. Age estimation of face images based on CNN and divide-and-rule strategy. Math Model Eng Probl 2018;2018:1-8.
36. Patcas R, Bernini DAJ, Volokitin A, Agustsson E, Rothe R, Timofte R. Applying artificial intelligence to assess the impact of orthognathic treatment on facial attractiveness and estimated age. Int J Oral Maxillofac Surg 2019;48:77-83.
37. Iyer TKR, Nersisson R, Zhuang Z, Joseph Raj AN, Refayee I. Machine learning-based facial beauty prediction and analysis of frontal facial images using facial landmarks and traditional image descriptors. Comput Intell Neurosci 2021;2021:4423407.
38. Khetpal S, Peck C, Parsaei Y, et al. Perceived age and attractiveness using facial recognition software in rhinoplasty patients: a proof-of-concept study. J Craniofac Surg 2022;33:1540-4.
39. Dorfman R, Chang I, Saadat S, Roostaeian J. Making the subjective objective: machine learning and rhinoplasty. Aesthet Surg J 2020;40:493-8.
40. Patcas R, Timofte R, Volokitin A, et al. Facial attractiveness of cleft patients: a direct comparison between artificial-intelligence-based scoring and conventional rater groups. Eur J Orthod 2019;41:428-33.
41. Boonipat T, Asaad M, Lin J, Glass GE, Mardini S, Stotland M. Using artificial intelligence to measure facial expression following facial reanimation surgery. Plast Reconstr Surg 2020;146:1147-50.
42. Dusseldorp JR, Guarin DL, van Veen MM, Jowett N, Hadlock TA. In the eye of the beholder: changes in perceived emotion expression after smile reanimation. Plast Reconstr Surg 2019;144:457-71.
43. Chen K, Lu SM, Cheng R, et al. Facial recognition neural networks confirm success of facial feminization surgery. Plast Reconstr Surg 2020;145:203-9.
44. Piwek L, Ellis DA, Andrews S, Joinson A. The rise of consumer health wearables: promises and barriers. PLoS Med 2016;13:e1001953.
45. Kayaalp M. Patient privacy in the era of big data. Balkan Med J 2018;35:8-17.
46. Lepri B, Oliver N, Pentland A. Ethical machines: the human-centric use of artificial intelligence. iScience 2021;24:102249.
47. Keskinbora KH. Medical ethics considerations on artificial intelligence. J Clin Neurosci 2019;64:277-82.
48. Maddox TM, Rumsfeld JS, Payne PRO. Questions for artificial intelligence in health care. JAMA 2019;321:31-2.
49. Liu J. Artificial intelligence is still far from truly revolutionizing plastic surgery. Plast Reconstr Surg 2020;146:390e.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.