REFERENCES
1. World Health Organization. Burns: Fact sheet. Available from: https://www.who.int/en/news-room/fact-sheets/detail/burns. [Last accessed on 10 Jul 2020].
4. Lawrence JW, Mason ST, Schomer K, Klein MB. Epidemiology and impact of scarring after burn injury: a systematic review of the literature. J Burn Care Res 2012;33:136-46.
5. Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med 2011;17:113-25.
6. Schouten HJ, Nieuwenhuis MK, van Baar ME, van der Schans CP, Niemeijer AS, van Zuijlen PPM. The prevalence and development of burn scar contractures: a prospective multicenter cohort study. Burns 2019;45:783-90.
7. Gangemi EN, Gregori D, Berchialla P, et al. Epidemiology and risk factors for pathologic scarring after burn wounds. Arch Facial Plast Surg 2008;10:93-102.
8. Rotatori RM, Starr B, Peake M, et al. Prevalence and risk factors for hypertrophic scarring of split thickness autograft donor sites in a pediatric burn population. Burns 2019;45:1066-74.
9. Mauck MC, Shupp JW, Williams F, et al. Hypertrophic scar severity at autograft sites is associated with increased pain and itch after major thermal burn injury. J Burn Care Res 2018;39:536-44.
10. Goverman J, He W, Martello G, et al. The presence of scarring and associated morbidity in the Burn Model System National Database. Ann Plast Surg 2019;82:S162-8.
11. Chin TL, Carrougher GJ, Amtmann D, et al. Trends 10 years after burn injury: a Burn Model System National Database study. Burns 2018;44:1882-6.
12. Tredget EE, Levi B, Donelan MB. Biology and principles of scar management and burn reconstruction. Surg Clin North Am 2014;94:793-815.
13. Driskell RR, Lichtenberger BM, Hoste E, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 2013;504:277-81.
14. Dunkin CSJ, Pleat JM, Gillespie PH, Tyler MPH, Roberts AHN, McGrouther DA. Scarring occurs at a critical depth of skin injury: precise measurement in a graduated dermal scratch in human volunteers. Plast Reconstr Surg 2007;119:1722-32.
15. Wang J, Hori K, Ding J, et al. Toll-like receptors expressed by dermal fibroblasts contribute to hypertrophic scarring. J Cell Physiol 2011;226:1265-73.
16. Tredget EE, Yang L, Delehanty M, Shankowsky H, Scott PG. Polarized Th2 cytokine production in patients with hypertrophic scar following thermal injury. J Interferon Cytokine Res 2006;26:179-89.
18. Wang J, Jiao H, Stewart TL, Shankowsky HA, Scott PG, Tredget EE. Improvement in postburn hypertrophic scar after treatment with IFN-alpha2b is associated with decreased fibrocytes. J Interferon Cytokine Res 2007;27:921-30.
19. Ding J, Ma Z, Liu H, et al. The therapeutic potential of a C-X-C chemokine receptor type 4 (CXCR-4) antagonist on hypertrophic scarring in vivo. Wound Repair Regen 2014;22:622-30.
20. Scott PG, Dodd CM, Tredget EE, Ghahary A, Rahemtulla F. Chemical characterization and quantification of proteoglycans in human post-burn hypertrophic and mature scars. Clin Sci (Lond) 1996;90:417-25.
21. Scott PG, Dodd CM, Tredget EE, Ghahary A, Rahemtulla F. Immunohistochemical localization of the proteoglycans decorin, biglycan and versican and transforming growth factor-beta in human post-burn hypertrophic and mature scars. Histopathology 1995;26:423-31.
22. Kwan P, Ding J, Tredget EE. MicroRNA 181b regulates decorin production by dermal fibroblasts and may be a potential therapy for hypertrophic scar. PLoS One 2015;10:e0123054.
23. Monstrey S, Hoeksema H, Verbelen J, Pirayesh A, Blondeel P. Assessment of burn depth and burn wound healing potential. Burns 2008;34:761-9.
24. Kwan P, Desmoulière A, Tredget EE. Molecular and cellular basis of hypertrophic scarring. In: Herndon D.N, editor. Total Burn Care. 4th ed. W.B. Saunders: London, UK; 2012. pp. 495-505.
25. Stewart TL, Ball B, Schembri PJ, et al; Wound Healing Research Group. The use of laser Doppler imaging as a predictor of burn depth and hypertrophic scar postburn injury. J Burn Care Res 2012;33:764-71.
26. Fraulin FO, Illmayer SJ, Tredget EE. Assessment of cosmetic and functional results of conservative versus surgical management of facial burns. J Burn Care Rehabil 1996;17:19-29.
28. Kim DE, Phillips TM, Jeng JC, et al. Microvascular assessment of burn depth conversion during varying resuscitation conditions. J Burn Care Rehabil 2001;22:406-16.
29. Cotter JL, Fader RC, Lilley C, Herndon DN. Chemical parameters, antimicrobial activities, and tissue toxicity of 0.1 and 0.5% sodium hypochlorite solutions. Antimicrob Agents Chemother 1985;28:118-22.
30. Jackson DM. The treatment of burns: an exercise in emergency surgery. Ann R Coll Surg Engl 1953;13:236-57.
31. Singh V, Devgan L, Bhat S, Milner SM. The pathogenesis of burn wound conversion. Ann Plast Surg 2007;59:109-15.
32. Jaskille AD, Ramella-Roman JC, Shupp JW, Jordan MH, Jeng JC. Critical review of burn depth assessment techniques: part II. review of laser Doppler technology. J Burn Care Res 2010;31:151-7.
33. Wang R, Zhao J, Zhang Z, Cao C, Zhang Y, Mao Y. Diagnostic accuracy of laser Doppler imaging for the assessment of burn depth: a meta-analysis and systematic review. J Burn Care Res 2020;41:619-25.
34. La Hei ER, Holland AJ, Martin HC. Laser Doppler imaging of paediatric burns: burn wound outcome can be predicted independent of clinical examination. Burns 2006;32:550-3.
35. Jeng JC, Bridgeman A, Shivnan L, et al. Laser Doppler imaging determines need for excision and grafting in advance of clinical judgment: a prospective blinded trial. Burns 2003;29:665-70.
36. Park YS, Choi YH, Lee HS, et al. The impact of laser Doppler imaging on the early decision-making process for surgical intervention in adults with indeterminate burns. Burns 2013;39:655-61.
37. Moor Instruments Inc. Early and accurate assessment of burns. Available from: http://us.moor.co.uk/product/burn-assessment-burn-assessment/286/o/41/video-channel. [Last accessed on 30 Nov 2015].
38. Shin JY, Yi HS. Diagnostic accuracy of laser Doppler imaging in burn depth assessment: Systematic review and meta-analysis. Burns 2016;42:1369-76.
39. Mladick R, Georgiade N, Thorne F. A clinical evaluation of the use of thermography in determining degree of burn injury. Plast Reconstr Surg 1966;38:512-8.
40. Iraniha S, Cinat ME, VanderKam VM, et al. Determination of burn depth with noncontact ultrasonography. J Burn Care Rehabil 2000;21:333-8.
41. Koruda MJ, Zimbler A, Settle RG, et al. Assessing burn wound depth using in vitro nuclear magnetic resonance (NMR). J Surg Res 1986;40:475-81.
42. Altintas MA, Altintas AA, Knobloch K, Guggenheim M, Zweifel CJ, Vogt PM. Differentiation of superficial-partial vs. deep-partial thickness burn injuries in vivo by confocal-laser-scanning microscopy. Burns 2009;35:80-6.
43. Wongkietkachorn A, Surakunprapha P, Winaikosol K, et al. Indocyanine green dye angiography as an adjunct to assess indeterminate burn wounds: a prospective, multicentered, triple-blinded study. J Trauma Acute Care Surg 2019;86:823-8.
44. Xue EY, Chandler LK, Viviano SL, Keith JD. Use of FLIR ONE smartphone thermography in burn wound assessment. Ann Plast Surg 2018;80:S236-8.
45. Fraulin FO, Tredget EE. Subcutaneous instillation of donor sites in burn patients. Br J Plast Surg 1993;46:324-6.
46. Koetsier KS, Wong JN, Muffley LA, Carrougher GJ, Pham TN, Gibran NS. Prospective observational study comparing burn surgeons’ estimations of wound healing after skin grafting to photo-assisted methods. Burns 2019;45:1562-70.
47. Ault P, Plaza A, Paratz J. Scar massage for hypertrophic burns scarring-a systematic review. Burns 2018;44:24-38.
48. Anthonissen M, Daly D, Janssens T, Van den Kerckhove E. The effects of conservative treatments on burn scars: a systematic review. Burns 2016;42:508-18.
49. Tredget EE, Shupp JW, Schneider JC. Scar management following burn injury. J Burn Care Res 2017;38:146-7.
50. Steinstraesser L, Flak E, Witte B, et al. Pressure garment therapy alone and in combination with silicone for the prevention of hypertrophic scarring: randomized controlled trial with intraindividual comparison. Plast Reconstr Surg 2011;128:306e-13e.
51. Wiseman J, Ware RS, Simons M, et al. Effectiveness of topical silicone gel and pressure garment therapy for burn scar prevention and management in children: a randomized controlled trial. Clin Rehabil 2020;34:120-31.
53. Hultman CS, Edkins RE, Wu C, Calvert CT, Cairns BA. Prospective, before-after cohort study to assess the efficacy of laser therapy on hypertrophic burn scars. Ann Plast Surg 2013;70:521-6.
54. Koike S, Akaishi S, Nagashima Y, Dohi T, Hyakusoku H, Ogawa R. Nd:YAG laser treatment for keloids and hypertrophic scars: an analysis of 102 cases. Plast Reconstr Surg Glob Open 2015;2:e272.
55. Poetschke J, Dornseifer U, Clementoni MT, et al. Ultrapulsed fractional ablative carbon dioxide laser treatment of hypertrophic burn scars: evaluation of an in-patient controlled, standardized treatment approach. Lasers Med Sci 2017;32:1031-40.
56. Orgill DP, Ogawa R. Current methods of burn reconstruction. Plast Reconstr Surg 2013;131:827e-36e.
57. Integra Dermal Regeneration Template [package insert on the internet]. Princeton, NJ: Integra LifeSciences; 2012. Available from: https://www.integralife.com/file/general/1453795605-1.pdf. [Last accessed on 12 Jul 2020].
58. Sauerbier M, Ofer N, Germann G, Baumeister S. Microvascular reconstruction in burn and electrical burn injuries of the severely traumatized upper extremity. Plast Reconstr Surg 2007;119:605-15.
59. Platt AJ, McKiernan MV, McLean NR. Free tissue transfer in the management of burns. Burns 1996;22:474-6.
60. Yang JY, Tsai FC, Chana JS, Chuang SS, Chang SY, Huang WC. Use of free thin anterolateral thigh flaps combined with cervicoplasty for reconstruction of postburn anterior cervical contractures. Plast Reconstr Surg 2002;110:39-46.
61. Angrigiani C. Aesthetic microsurgical reconstruction of anterior neck burn deformities. Plast Reconstr Surg 1994;93:507-18.
62. Parrett BM, Pomahac B, Orgill DP, Pribaz JJ. The role of free-tissue transfer for head and neck burn reconstruction. Plast Reconstr Surg 2007;120:1871-8.
63. Baumeister S, Köller M, Dragu A, Germann G, Sauerbier M. Principles of microvascular reconstruction in burn and electrical burn injuries. Burns 2005;31:92-8.
64. Meier K, Nanney LB. Emerging new drugs for scar reduction. Expert Opin Emerg Drugs 2006;11:39-47.
65. Pakyari M, Farrokhi A, Maharlooei MK, Ghahary A. Critical role of transforming growth factor beta in different phases of wound healing. Adv Wound Care (New Rochelle) 2013;2:215-24.
66. RD Mag (2011). Juvista Fails Late-Stage Trial. Available from: https://www.rdmag.com/news/2011/02/juvista-fails-late-stage-trial. [Last accessed on 5 Jun 2019].
67. So K, McGrouther DA, Bush JA, et al. Avotermin for scar improvement following scar revision surgery: a randomized, double-blind, within-patient, placebo-controlled, phase II clinical trial. Plast Reconstr Surg 2011;128:163-72.
68. Sun ZL, Feng Y, Zou ML, et al. Emerging role of IL-10 in hypertrophic scars. Front Med (Lausanne) 2020;7:438.
69. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Investigation into the Scar Reduction Potential of Prevascar (Interleukin-10). Available from: https://www.clinicaltrials.gov/ct2/show/study/NCT00984646. [Last accessed on 20 Dec 2020].
70. Kieran I, Taylor C, Bush J, et al. Effects of interleukin-10 on cutaneous wounds and scars in humans of African continental ancestral origin. Wound Repair Regen 2014;22:326-33.
71. Doersch KM, DelloStritto DJ, Newell-Rogers MK. The contribution of interleukin-2 to effective wound healing. Exp Biol Med (Maywood) 2017;242:384-96.
72. Januszyk M, Wong VW, Bhatt KA, et al. Mechanical offloading of incisional wounds is associated with transcriptional downregulation of inflammatory pathways in a large animal model. Organogenesis 2014;10:186-93.
73. Wong VW, Paterno J, Sorkin M, et al. Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation. FASEB J 2011;25:4498-510.
74. Gurtner GC, Dauskardt RH, Wong VW, et al. Improving cutaneous scar formation by controlling the mechanical environment: large animal and phase I studies. Ann Surg 2011;254:217-25.
75. Wong VW, Rustad KC, Akaishi S, et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat Med 2011;18:148-52.
76. Ma K, Kwon SH, Padmanabhan J, et al. Controlled delivery of a focal adhesion kinase inhibitor results in accelerated wound closure with decreased scar formation. J Invest Dermatol 2018;138:2452-60.
78. Sheckter CC, Meyerkord NL, Sinskey YL, Clark P, Anderson K, Van Vliet M. The optimal treatment for partial thickness burns: a cost-utility analysis of skin allograft vs. topical silver dressings. J Burn Care Res 2020;41:450-6.
79. Spiekstra SW, Breetveld M, Rustemeyer T, Scheper RJ, Gibbs S. Wound-healing factors secreted by epidermal keratinocytes and dermal fibroblasts in skin substitutes. Wound Repair Regen 2007;15:708-17.
81. Chua AW, Khoo YC, Tan BK, Tan KC, Foo CL, Chong SJ. Skin tissue engineering advances in severe burns: review and therapeutic applications. Burns Trauma 2016;4:3.
82. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006;98:1076-84.
83. Duscher D, Barrera J, Wong VW, et al. Stem cells in wound healing: the future of regenerative medicine? A mini-review. Gerontology 2016;62:216-25.
84. Jiang D, Scharffetter-Kochanek K. Mesenchymal stem cells adaptively respond to environmental cues thereby improving granulation tissue formation and wound healing. Front Cell Dev Biol 2020;8:697.
85. Chen FG, Zhang WJ, Bi D, et al. Clonal analysis of nestin(-) vimentin(+) multipotent fibroblasts isolated from human dermis. J Cell Sci 2007;120:2875-83.
86. Vander Beken S, de Vries JC, Meier-Schiesser B, et al. Newly defined ATP-binding cassette subfamily B member 5 positive dermal mesenchymal stem cells promote healing of chronic iron-overload wounds via secretion of interleukin-1 receptor antagonist. Stem Cells 2019;37:1057-74.
87. Tredget EE, Shankowsky HA, Pannu R, et al. Transforming growth factor-beta in thermally injured patients with hypertrophic scars: effects of interferon alpha-2b. Plast Reconstr Surg 1998;102:1317-28. discussion 1329-30
88. Wang J, Chen H, Shankowsky HA, Scott PG, Tredget EE. Improved scar in postburn patients following interferon-alpha2b treatment is associated with decreased angiogenesis mediated by vascular endothelial cell growth factor. J Interferon Cytokine Res 2008;28:423-34.
89. Kwon SH, Barrera JA, Noishiki C, et al. Current and emerging topical scar mitigation therapies for craniofacial burn wound healing. Front Physiol 2020;11:916.
90. Tredget E, Ferland-Caron G, Kwan P, Wong J. 55 The advantages of fasciocutaneous free tissue transfers for the management of post-burn scar contractures. J Burn Care Res 2019;40:S38-9.