REFERENCES

1. Kaul K, Tarr JM, Ahmad SI, Kohner EM, Chibber R. Introduction to diabetes mellitus. Adv Exp Med Biol 2013;771:1-11.

2. International Diabetes Federation. IDF diabetes atlas 2021. Available from: https://diabetesatlas.org/atlas/tenth-edition/. [Last accessed on 15 Apr 2024].

3. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016;387:1513-30.

4. Ortega Á, Berná G, Rojas A, Martín F, Soria B. Gene-diet interactions in type 2 diabetes: the chicken and egg debate. Int J Mol Sci 2017;18:1188.

5. Reddy SSK, Tan M. Chapter 1 - Diabetes mellitus and its many complications. In: Tan M, editor. Diabetes mellitus. Academic Press; 2020. pp. 1-18.

6. Lukovits TG, Mazzone TM, Gorelick TM. Diabetes mellitus and cerebrovascular disease. Neuroepidemiology 1999;18:1-14.

7. Ergul A, Kelly-Cobbs A, Abdalla M, Fagan SC. Cerebrovascular complications of diabetes: focus on stroke. Endocr Metab Immune Disord Drug Targets 2012;12:148-58.

8. Phipps MS, Jastreboff AM, Furie K, Kernan WN. The diagnosis and management of cerebrovascular disease in diabetes. Curr Diab Rep 2012;12:314-23.

9. Savage PJ. Cardiovascular complications of diabetes mellitus: what we know and what we need to know about their prevention. Ann Intern Med 1996;124:123-6.

10. Glovaci D, Fan W, Wong ND. Epidemiology of diabetes mellitus and cardiovascular disease. Curr Cardiol Rep 2019;21:21.

11. Smith SC Jr. Multiple risk factors for cardiovascular disease and diabetes mellitus. Am J Med 2007;120:S3-11.

12. Rivetti G, Hursh BE, Miraglia Del Giudice E, Marzuillo P. Acute and chronic kidney complications in children with type 1 diabetes mellitus. Pediatr Nephrol 2023;38:1449-58.

13. Hahr AJ, Molitch ME. Management of diabetes mellitus in patients with chronic kidney disease. Clin Diabetes Endocrinol 2015;1:2.

14. Alsahli M, Gerich JE. Hypoglycemia, chronic kidney disease, and diabetes mellitus. Mayo Clin Proc 2014;89:1564-71.

15. Cui Y, Andersen DK. Pancreatogenic diabetes: special considerations for management. Pancreatology 2011;11:279-94.

16. Bradley DA, Hart PA. Diabetes mellitus related to diseases of the exocrine pancreas (pancreatogenic diabetes). In: Domínguez-muñoz JE, editor. Clinical pancreatology for practising gastroenterologists and surgeons. Wiley; 2021. pp. 668-78.

17. Sjoberg RJ, Kidd GS. Pancreatic diabetes mellitus. Diabetes Care 1989;12:715-24.

18. Papatheodorou K, Banach M, Bekiari E, Rizzo M, Edmonds M. Complications of diabetes 2017. J Diabetes Res 2018; 2018:3086167.

19. Alberti KGMM, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO Consultation. Diabet Med 1998;15:539-53.

20. Unnikrishnan R, Anjana RM, Mohan V. Diabetes mellitus and its complications in India. Nat Rev Endocrinol 2016;12:357-70.

21. Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia 2019;62:3-16.

22. World Health Organization. Global report on diabetes. 2016. Available from: https://www.who.int/publications/i/item/9789241565257. [Last accessed on 15 Apr 2024].

23. Centers for Disease Control and Prevention. Diabetes tests. 2023. Available from: https://www.cdc.gov/diabetes/basics/getting-tested.html. [Last accessed on 19 Apr 2024].

24. Santos Oliveira L, Oliveira SF, de Barros Manchado-Gobatto F, da Cunha Costa M. Salivary and blood lactate kinetics in response to maximal workload on cycle ergometer. Rev Bras Cineantropom Desempenho Hum 2015;17:565-74. (in Portuguese).

25. Aleksandar J, Vladan P, Markovic-Jovanovic S, Stolic R, Mitic J, Smilic T. Hyperlactatemia and the outcome of type 2 diabetic patients suffering acute myocardial infarction. J Diabetes Res 2016;2016:6901345.

26. D.S JP, Pasula S, Sunanda V, Apparow DN, kodali V. Study of uric acid and lipid profile in recent onset essential hypertension. IJCBR 2018;5:301-5. Available from: https://www.ijcbr.in/journal-article-file/6818. [Last accessed on 28 Apr 2024]

27. Wang Q, Wen X, Kong J. Recent progress on uric acid detection: a review. Crit Rev Anal Chem 2020;50:359-75.

28. Patterson MJ, Galloway SDR, Nimmo MA. Variations in regional sweat composition in normal human males. Exp Physiol 2000;85:869-75.

29. Bulmer MG, Forwell GD. The concentration of sodium in thermal sweat. J Physiol 1956;132:115-22.

30. Sonner Z, Wilder E, Heikenfeld J, et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 2015;9:031301.

31. Sato K, Kang WH, Saga K, Sato KT. Biology of sweat glands and their disorders. I. Normal sweat gland function. J Am Acad Dermatol 1989;20:537-63.

32. Sato K. Sweat induction from an isolated eccrine sweat gland. Am J Physiol 1973;225:1147-52.

33. Xiao Y, Hou L, Wang M, et al. Noninvasive glucose monitoring using portable GOx-Based biosensing system. Anal Chim Acta 2024;1287:342068.

34. Gao W, Emaminejad S, Nyein HYY, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016;529:509-14.

35. Emaminejad S, Gao W, Wu E, et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc Natl Acad Sci U S A 2017;114:4625-30.

36. Derbyshire PJ, Barr H, Davis F, Higson SP. Lactate in human sweat: a critical review of research to the present day. J Physiol Sci 2012;62:429-40.

37. Luo TT, Sun ZH, Li CX, Feng JL, Xiao ZX, Li WD. Monitor for lactate in perspiration. J Physiol Sci 2021;71:26.

38. Gupta S, Nayak MT, Sunitha JD, Dawar G, Sinha N, Rallan NS. Correlation of salivary glucose level with blood glucose level in diabetes mellitus. J Oral Maxillofac Pathol 2017;21:334-9.

39. Balan P, Babu SG, Sucheta KN, et al. Can saliva offer an advantage in monitoring of diabetes mellitus? - A case control study. J Clin Exp Dent 2014;6:e335-8.

40. Tékus E, Kaj M, Szabó E, et al. Comparison of blood and saliva lactate level after maximum intensity exercise. Acta Biol Hung 2012;63:89-98.

41. Zhao J, Huang Y. Salivary uric acid as a noninvasive biomarker for monitoring the efficacy of urate-lowering therapy in a patient with chronic gouty arthropathy. Clin Chim Acta 2015;450:115-20.

42. Singh G, Iyer EM, Malik H. Relative changes in salivary sodium and potassium in relation to exposure to high g stress. Med J Armed Forces India 1994;50:261-5.

43. Kallapur B, Ramalingam K, Bastian, Mujib A, Sarkar A, Sethuraman S. Quantitative estimation of sodium, potassium and total protein in saliva of diabetic smokers and nonsmokers: a novel study. J Nat Sci Biol Med 2013;4:341-5.

44. Sen DK, Sarin GS. Tear glucose levels in normal people and in diabetic patients. Br J Ophthalmol 1980;64:693-5.

45. Thomas N, Lähdesmäki I, Parviz B. A contact lens with an integrated lactate sensor. Sens Actuators B Chem 2012;162:128-34.

46. Horwath-Winter J, Kirchengast S, Meinitzer A, Wachswender C, Faschinger C, Schmut O. Determination of uric acid concentrations in human tear fluid, aqueous humour and serum. Acta Ophthalmol 2009;87:188-92.

47. Kim EH, Lee ES, Lee DY, Kim YP. Facile determination of sodium ion and osmolarity in artificial tears by sequential DNAzymes. Sensors 2017;17:2840.

48. Freckmann G, Hagenlocher S, Baumstark A, et al. Continuous glucose profiles in healthy subjects under everyday life conditions and after different meals. J Diabetes Sci Technol 2007;1:695-703.

49. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group; Fox LA, Beck RW, Xing D. Variation of interstitial glucose measurements assessed by continuous glucose monitors in healthy, nondiabetic individuals. Diabetes Care 2010;33:1297-9.

50. Koschinsky T, Heinemann L. Sensors for glucose monitoring: technical and clinical aspects. Diabetes Metab Res Rev 2001;17:113-23.

51. Heikenfeld J, Jajack A, Feldman B, et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat Biotechnol 2019;37:407-19.

52. Samant PP, Niedzwiecki MM, Raviele N, et al. Sampling interstitial fluid from human skin using a microneedle patch. Sci Transl Med 2020;12:eaaw0285.

53. Sieg A, Guy RH, Delgado-Charro MB. Noninvasive glucose monitoring by reverse iontophoresis in-vivo: application of the internal standard concept. Clin Chem 2004;50:1383-90.

54. Zacchia M, Abategiovanni ML, Stratigis S, Capasso G. Potassium: from physiology to clinical implications. Kidney Dis 2016;2:72-9.

55. Palmer BF, Clegg DJ. Physiology and pathophysiology of potassium homeostasis. Adv Physiol Educ 2016;40:480-90.

56. Xiong Q, Liu J, Xu Y. Effects of uric acid on diabetes mellitus and its chronic complications. Int J Endocrinol 2019;2019:9691345.

57. Woyesa SB, Gebisa WC, Anshebo DL. Assessment of selected serum electrolyte and associated risk factors in diabetic patients. Diabetes Metab Syndr Obes 2019;12:2811-7.

58. Klonoff DC, Ahn D, Drincic A. Continuous glucose monitoring: a review of the technology and clinical use. Diabetes Res Clin Pract 2017;133:178-92.

59. Mahato K, Wang J. Electrochemical sensors: from the bench to the skin. Sens Actuators B Chem 2021;344:130178.

60. Hernández-Rodríguez JF, Rojas D, Escarpa A. Electrochemical sensing directions for next-generation healthcare: trends, challenges, and frontiers. Anal Chem 2021;93:167-83.

61. Lee I, Probst D, Klonoff D, Sode K. Continuous glucose monitoring systems - current status and future perspectives of the flagship technologies in biosensor research. Biosens Bioelectron 2021;181:113054.

62. Zheng L, Zhu D, Wang W, Liu J, Thng STG, Chen P. A silk-microneedle patch to detect glucose in the interstitial fluid of skin or plant tissue. Sens Actuators B Chem 2022;372:132626.

63. Moonla C, Reynoso M, Casanova A, et al. Continuous ketone monitoring via wearable microneedle patch platform. ACS Sens 2024;9:1004-13.

64. Krentz AJ, Hompesch M. Glucose: archetypal biomarker in diabetes diagnosis, clinical management and research. Biomark Med 2016;10:1153-66.

65. Yan K, Zhang D, Wu D, Wei H, Lu G. Design of a breath analysis system for diabetes screening and blood glucose level prediction. IEEE Trans Biomed Eng 2014;61:2787-95.

66. Anders HJ, Huber TB, Isermann B, Schiffer M. CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol 2018;14:361-77.

67. Hatada M, Wilson E, Khanwalker M, Probst D, Okuda-shimazaki J, Sode K. Current and future prospective of biosensing molecules for point-of-care sensors for diabetes biomarker. Sens Actuators B Chem 2022;351:130914.

68. Crawford SO, Hoogeveen RC, Brancati FL, et al. Association of blood lactate with type 2 diabetes: the Atherosclerosis Risk in Communities Carotid MRI Study. Int J Epidemiol 2010;39:1647-55.

69. Azushima K, Kovalik JP, Yamaji T, et al. Abnormal lactate metabolism is linked to albuminuria and kidney injury in diabetic nephropathy. Kidney Int 2023;104:1135-49.

70. Pecoits-Filho R, Abensur H, Betônico CC, et al. Interactions between kidney disease and diabetes: dangerous liaisons. Diabetol Metab Syndr 2016;8:50.

71. Baruh S, Sherman L, Markowitz S. Diabetic ketoacidosis and coma. Med Clin North Am 1981;65:117-32.

72. Young BA. Ketosis and coma in diabetes mellitus. Postgrad Med J 1951;27:338-44.

73. Beigelman PM. Severe diabetic ketoacidosis (diabetic “coma”). 482 episodes in 257 patients; experience of three years. Diabetes 1971;20:490-500.

74. Lytvyn Y, Perkins BA, Cherney DZ. Uric acid as a biomarker and a therapeutic target in diabetes. Can J Diabetes 2015;39:239-46.

75. Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 2016;134:752-72.

76. Din UAAS, Salem MM, Abdulazim DO. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: a review. J Adv Res 2017;8:537-48.

77. Mou L, Xia Y, Jiang X. Epidermal sensor for potentiometric analysis of metabolite and electrolyte. Anal Chem 2021;93:11525-31.

78. Liamis G, Liberopoulos E, Barkas F, Elisaf M. Diabetes mellitus and electrolyte disorders. World J Clin Cases 2014;2:488-96.

79. Mirzajani H, Mirlou F, Istif E, Singh R, Beker L. Powering smart contact lenses for continuous health monitoring: Recent advancements and future challenges. Biosens Bioelectron 2022;197:113761.

80. Liu H, Yan X, Gu Z, Xiu G, Xiao X. Electrochemical sensing in contact lenses. Electroanalysis 2022;34:227-36.

81. Kim J, Cha E, Park JU. Recent advances in smart contact lenses. Adv Mater Technol 2020;5:1900728.

82. Zhu Y, Li S, Li J, et al. Lab-on-a-contact lens: recent advances and future opportunities in diagnostics and therapeutics. Adv Mater 2022;34:e2108389.

83. Jin X, Cai A, Xu T, Zhang X. Artificial intelligence biosensors for continuous glucose monitoring. Interdiscip Mater 2023;2:290-307.

84. Das SK, Nayak KK, Krishnaswamy PR, Kumar V, Bhat N. Review - electrochemistry and other emerging technologies for continuous glucose monitoring devices. ECS Sens Plus 2022;1:031601.

85. Wang J. Electrochemical glucose biosensors. Chem Rev 2008;108:814-25.

86. Guinovart T, Parrilla M, Crespo GA, Rius FX, Andrade FJ. Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes. Analyst 2013;138:5208-15.

87. Parrilla M, Ferré J, Guinovart T, Andrade FJ. Wearable potentiometric sensors based on commercial carbon fibres for monitoring sodium in sweat. Electroanalysis 2016;28:1267-75.

88. Jung HH, Yea J, Lee H, et al. Taste bud-inspired single-drop multitaste sensing for comprehensive flavor analysis with deep learning algorithms. ACS Appl Mater Interfaces 2023;15:46041-53.

89. Jung HH, Ha J, Park J, et al. Highly deformable double-sided neural probe with all-in-one electrode system for real-time in-vivo detection of dopamine for Parkinson’s disease. Adv Funct Mater 2024;34:2311436.

90. Liu G, Lin Y. Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes. Electrochem Commun 2006;8:251-6.

91. Romero MR, Ahumada F, Garay F, Baruzzi AM. Amperometric biosensor for direct blood lactate detection. Anal Chem 2010;82:5568-72.

92. Vidya H, Kumara Swamy BE, Sharma SC, Jayaprakash GK, Hariprasad SA. Effect of graphite oxide and exfoliated graphite oxide as a modifier for the voltametric determination of dopamine in presence of uric acid and folic acid. Sci Rep 2021;11:24040.

93. Alimohammadi S, Kiani MA, Imani M, Rafii-Tabar H, Sasanpour P. A proposed implantable voltammetric carbon fiber-based microsensor for corticosteroid monitoring by cochlear implants. Mikrochim Acta 2021;188:357.

94. Lei Y, Butler D, Lucking MC, et al. Single-atom doping of MoS2 with manganese enables ultrasensitive detection of dopamine: experimental and computational approach. Sci Adv 2020;6:eabc4250.

95. Khan RN, Saba F, Kausar SF, Siddiqui MH. Pattern of electrolyte imbalance in Type 2 diabetes patients: experience from a tertiary care hospital. Pak J Med Sci 2019;35:797-801.

96. Campuzano S, Pedrero M, Torrente-rodríguez RM, Pingarrón JM. Affinity-based wearable electrochemical biosensors: natural versus biomimetic receptors. Anal Sens 2023;3:e202200087.

97. García-Salas JM, Tello-Montoliu A, Manzano-Fernández S, et al. Interleukin-6 as a predictor of cardiovascular events in troponin-negative non-ST elevation acute coronary syndrome patients. Int J Clin Pract 2014;68:294-303.

98. Ferreira PC, Ataíde VN, Silva Chagas CL, et al. Wearable electrochemical sensors for forensic and clinical applications. TrAC Trends Anal Chem 2019;119:115622.

99. Yang Y, Feijóo J, Briega-martos V, et al. Operando methods: a new era of electrochemistry. Curr Opin Electrochem 2023;42:101403.

100. Bobacka J, Ivaska A, Lewenstam A. Potentiometric ion sensors. Chem Rev 2008;108:329-51.

101. Lee H, Hong YJ, Baik S, Hyeon T, Kim DH. Enzyme-based glucose sensor: from invasive to wearable device. Adv Healthc Mater 2018;7:e1701150.

102. Bollella P, Sharma S, Cass AEG, Antiochia R. Microneedle-based biosensor for minimally-invasive lactate detection. Biosens Bioelectron 2019;123:152-9.

103. Sun M, Cui C, Chen H, Wang D, Zhang W, Guo W. Enzymatic and non-enzymatic uric acid electrochemical biosensors: a review. Chempluschem 2023;88:e202300262.

104. Rocchitta G, Secchi O, Alvau MD, et al. Development and characterization of an implantable biosensor for telemetric monitoring of ethanol in the brain of freely moving rats. Anal Chem 2012;84:7072-9.

105. Rasitanon N, Ittisoponpisan S, Kaewpradub K, Jeerapan I. Wearable electrodes for lactate: applications in enzyme-based sensors and energy biodevices. Anal Sens 2023;3:e202200066.

106. Harper A, Anderson MR. Electrochemical glucose sensors - developments using electrostatic assembly and carbon nanotubes for biosensor construction. Sensors 2010;10:8248-74.

107. Ghindilis AL, Krishnan R, Atanasov P, Wilkins E. Flow-through amperometric immunosensor: fast ‘sandwich’ scheme immunoassay. Biosens Bioelectron 1997;12:415-23.

108. Antiochia R, Cass AEG, Palleschi G. Purification and sensor applications of an oxygen insensitive, thermophilic diaphorase. Anal Chim Acta 1997;345:17-28.

109. Chaubey A, Malhotra BD. Mediated biosensors. Biosens Bioelectron 2002;17:441-56.

110. Bridge JA, Iyengar S, Salary CB, et al. Clinical response and risk for reported suicidal ideation and suicide attempts in pediatric antidepressant treatment: a meta-analysis of randomized controlled trials. JAMA 2007;297:1683-96.

111. Ghindilis AL, Atanasov P, Wilkins E. Enzyme-catalyzed direct electron transfer: fundamentals and analytical applications. Electroanalysis 1997;9:661-74.

112. Gorton L. Carbon paste electrodes modified with enzymes, tissues, and cells. Electroanalysis 1995;7:23-45.

113. Gorton L, Lindgren A, Larsson T, Munteanu F, Ruzgas T, Gazaryan I. Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Anal Chim Acta 1999;400:91-108.

114. Zhang W, Li G. Third-generation biosensors based on the direct electron transfer of proteins. Anal Sci 2004;20:603-9.

115. Xiao X, Xia HQ, Wu R, et al. Tackling the challenges of enzymatic (bio)fuel cells. Chem Rev 2019;119:9509-58.

116. Wilson JR, Caruana DJ, Gilardi G. Engineering redox functions in a nucleic acid binding protein. Chem Commun 2003:356-7.

117. Zayats M, Katz E, Willner I. Electrical contacting of glucose oxidase by surface-reconstitution of the apo-protein on a relay-boronic acid-FAD cofactor monolayer. J Am Chem Soc 2002;124:2120-1.

118. Jesionowski T, Zdarta J, Krajewska B. Enzyme immobilization by adsorption: a review. Adsorption 2014;20:801-21.

119. Imam HT, Marr PC, Marr AC. Enzyme entrapment, biocatalyst immobilization without covalent attachment. Green Chem 2021;23:4980-5005.

120. Zucca P, Sanjust E. Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules 2014;19:14139-94.

121. Harris JM, Reyes C, Lopez GP. Common causes of glucose oxidase instability in in-vivo biosensing: a brief review. J Diabetes Sci Technol 2013;7:1030-8.

122. Guzsvány V, Anojčić J, Radulović E, et al. Screen-printed enzymatic glucose biosensor based on a composite made from multiwalled carbon nanotubes and palladium containing particles. Microchim Acta 2017;184:1987-96.

123. Sanaeifar N, Rabiee M, Abdolrahim M, Tahriri M, Vashaee D, Tayebi L. A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Anal Biochem 2017;519:19-26.

124. Baby TT, Ramaprabhu S. SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor. Talanta 2010;80:2016-22.

125. Shukla M, Pramila, Dixit T, Prakash R, Palani IA, Singh V. Influence of aspect ratio and surface defect density on hydrothermally grown ZnO nanorods towards amperometric glucose biosensing applications. Appl Surf Sci 2017;422:798-808.

126. Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 2015;29:205-20.

127. Ichimura K, Watanabe S. Preparation and characteristics of photocross-linkable poly(vinyl alcohol). J Polym Sci Polym Chem Ed 1982;20:1419-32.

128. Ichimura K. A convenient photochemical method to immobilize enzymes. J Polym Sci Polym Chem Ed 1984;22:2817-28.

129. Kandimalla VB, Tripathi VS, Ju H. Immobilization of biomolecules in sol-gels: biological and analytical applications. Crit Rev Anal Chem 2006;36:73-106.

130. Gupta R, Chaudhury NK. Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects. Biosens Bioelectron 2007;22:2387-99.

131. Park JK, Chang HN. Microencapsulation of microbial cells. Biotechnol Adv 2000;18:303-19.

132. King GA, Daugulis AJ, Faulkner P, Goosen MFA. Alginate-polylysine microcapsules of controlled membrane molecular weight cutoff for mammalian cell culture engineering. Biotechnol Prog 1987;3:231-40.

133. Nguyen HH, Kim M. An overview of techniques in enzyme immobilization. Appl Sci Converg Technol 2017;26:157-63.

134. Gustafsson H, Thörn C, Holmberg K. A comparison of lipase and trypsin encapsulated in mesoporous materials with varying pore sizes and pH conditions. Colloids Surf B Biointerfaces 2011;87:464-71.

135. Matsuura S, Ishii R, Itoh T, et al. Immobilization of enzyme-encapsulated nanoporous material in a microreactor and reaction analysis. Chem Eng J 2011;167:744-9.

136. Chakraborty S, Rusli H, Nath A, et al. Immobilized biocatalytic process development and potential application in membrane separation: a review. Crit Rev Biotechnol 2016;36:43-58.

137. Sulaiman S, Mokhtar MN, Naim MN, Baharuddin AS, Sulaiman A. A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Appl Biochem Biotechnol 2015;175:1817-42.

138. Marrazza G. Piezoelectric biosensors for organophosphate and carbamate pesticides: a review. Biosensors 2014;4:301-17.

139. Regiart M, Ledo A, Fernandes E, et al. Highly sensitive and selective nanostructured microbiosensors for glucose and lactate simultaneous measurements in blood serum and in-vivo in brain tissue. Biosens Bioelectron 2022;199:113874.

140. Narwal V, Sharma M, Rani S, Pundir CS. An ultrasensitive amperometric determination of lactate by lactate dehydrogenase nanoparticles immobilized onto Au electrode. Int J Biol Macromol 2018;115:767-75.

141. Dasgupta A, Sori N, Petrova S, et al. Comprehensive collagen crosslinking comparison of microfluidic wet-extruded microfibers for bioactive surgical suture development. Acta Biomater 2021;128:186-200.

142. Mir AR, Habib S, Uddin M. Recent advances in histone glycation: emerging role in diabetes and cancer. Glycobiology 2021;31:1072-9.

143. Sonker AK, Belay M, Rathore K, et al. Crosslinking of agar by diisocyanates. Carbohydr Polym 2018;202:454-60.

144. Feng R, Chu Y, Wang X, Wu Q, Tang F. A long-term stable and flexible glucose sensor coated with poly(ethylene glycol)-modified polyurethane. J Electroanal Chem 2021;895:115518.

145. Chang BS, Mahoney RR. Enzyme thermostabilization by bovine serum albumin and other proteins: evidence for hydrophobic interactions. Biotechol Appl Biochem 1995;22:203-14.

146. Broun GB. Chemically aggregated enzymes. Methods Enzymol 1976;44:263-80.

147. Das S, Mishra B, Gill K, et al. Isolation and characterization of novel protein with anti-fungal and anti-inflammatory properties from Aloe vera leaf gel. Int J Biol Macromol 2011;48:38-43.

148. Fopase R, Paramasivam S, Kale P, Paramasivan B. Strategies, challenges and opportunities of enzyme immobilization on porous silicon for biosensing applications. J Environ Chem Eng 2020;8:104266.

149. Perez JJ, Francois NJ, Maroniche GA, Borrajo MP, Pereyra MA, Creus CM. A novel, green, low-cost chitosan-starch hydrogel as potential delivery system for plant growth-promoting bacteria. Carbohydr Polym 2018;202:409-17.

150. Shao Y, Wan H, Miao J, Guan G. Synthesis of an immobilized Brønsted acidic ionic liquid catalyst on chloromethyl polystyrene grafted silica gel for esterification. Reac Kinet Mech Cat 2013;109:149-58.

151. Guajardo N. Immobilization of lipases using poly(vinyl) alcohol. Polymers 2023;15:2021.

152. Tang ZM, Kang JW. Enzyme inhibitor screening by capillary electrophoresis with an on-column immobilized enzyme microreactor created by an ionic binding technique. Anal Chem 2006;78:2514-20.

153. Hwang ET, Gu MB. Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci 2013;13:49-61.

154. Kaur J, Choudhary S, Chaudhari R, Jayant RD, Joshi A. 9 - Enzyme-based biosensors. In: Pal K, Kraatz HB, Khasnobish A, Bag S, Banerjee I, Kuruganti U, editors. Bioelectronics and medical devices. Woodhead Publishing; 2019. pp. 211-40.

155. Sirisha VL, Jain A, Jain A. Chapter nine - Enzyme immobilization: an overview on methods, support material, and applications of immobilized enzymes. Adv Food Nutr Res 2016;79:179-211.

156. Moreno-Bondi MC, Taitt CR, Shriver-Lake LC, Ligler FS. Multiplexed measurement of serum antibodies using an array biosensor. Biosens Bioelectron 2006;21:1880-6.

157. Akter R, Jeong B, Lee YM, Choi JS, Rahman MA. Femtomolar detection of cardiac troponin I using a novel label-free and reagent-free dendrimer enhanced impedimetric immunosensor. Biosens Bioelectron 2017;91:637-43.

158. Andoy NM, Filipiak MS, Vetter D, Gutiérrez-sanz Ó, Tarasov A. Graphene-based electronic immunosensor with femtomolar detection limit in whole serum. Adv Mater Technol 2018;3:1800186.

159. Basu J, Datta S, RoyChaudhuri C. A graphene field effect capacitive Immunosensor for sub-femtomolar food toxin detection. Biosens Bioelectron 2015;68:544-9.

160. Wehmeyer KR, White RJ, Kissinger PT, Heineman WR. Electrochemical affinity assays/sensors: brief history and current status. Annu Rev Anal Chem 2021;14:109-31.

161. Tu J, Torrente-Rodríguez RM, Wang M, Gao W. The era of digital health: a review of portable and wearable affinity biosensors. Adv Funct Mater 2020;30:1906713.

162. Sempionatto JR, Lasalde-Ramírez JA, Mahato K, Wang J, Gao W. Wearable chemical sensors for biomarker discovery in the omics era. Nat Rev Chem 2022;6:899-915.

163. Flynn CD, Chang D, Mahmud A, et al. Biomolecular sensors for advanced physiological monitoring. Nat Rev Bioeng 2023;1:560-75.

164. Guo W, Zhang C, Ma T, et al. Advances in aptamer screening and aptasensors’ detection of heavy metal ions. J Nanobiotechnology 2021;19:166.

165. Yang D, Liu X, Zhou Y, et al. Aptamer-based biosensors for detection of lead(ii) ion: a review. Anal Methods 2017;9:1976-90.

166. Wang W, Chen C, Qian M, Zhao XS. Aptamer biosensor for protein detection using gold nanoparticles. Anal Biochem 2008;373:213-9.

167. Cheng AK, Sen D, Yu HZ. Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules. Bioelectrochemistry 2009;77:1-12.

168. Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Vörös J, Nakatsuka N. Nonspecific binding-fundamental concepts and consequences for biosensing applications. Chem Rev 2021;121:8095-160.

169. Blind M, Blank M. Aptamer selection technology and recent advances. Mol Ther Nucleic Acids 2015;4:e223.

170. Kohlberger M, Gadermaier G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol Appl Biochem 2022;69:1771-92.

171. Lyu C, Khan IM, Wang Z. Capture-SELEX for aptamer selection: a short review. Talanta 2021;229:122274.

172. Yano-Ozawa Y, Lobsiger N, Muto Y, et al. Molecular detection using aptamer-modified gold nanoparticles with an immobilized DNA brush for the prevention of non-specific aggregation. RSC Adv 2021;11:11984-91.

173. Liu Y, Canoura J, Alkhamis O, Xiao Y. Immobilization strategies for enhancing sensitivity of electrochemical aptamer-based sensors. ACS Appl Mater Interfaces 2021;13:9491-9.

174. Oberhaus FV, Frense D, Beckmann D. Immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins: a review. Biosensors 2020;10:45.

175. Herrera-Chacón A, Cetó X, Del Valle M. Molecularly imprinted polymers - towards electrochemical sensors and electronic tongues. Anal Bioanal Chem 2021;413:6117-40.

176. Gui R, Jin H, Guo H, Wang Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens Bioelectron 2018;100:56-70.

177. Lowdon JW, Diliën H, Singla P, et al. MIPs for commercial application in low-cost sensors and assays - an overview of the current status quo. Sens Actuators B Chem 2020;325:128973.

178. Denmark DJ, Mohapatra S, Mohapatra SS. Point-of-care diagnostics: molecularly imprinted polymers and nanomaterials for enhanced biosensor selectivity and transduction. EuroBiotech J 2020;4:184-206.

179. Pourmadadi M, Soleimani Dinani H, Saeidi Tabar F, et al. Properties and applications of graphene and its derivatives in biosensors for cancer detection: a comprehensive review. Biosensors 2022;12:269.

180. Morales MA, Halpern JM. Guide to Selecting a Biorecognition element for biosensors. Bioconjug Chem 2018;29:3231-9.

181. Choi KR, Troudt BK, Bühlmann P. Ion-selective electrodes with sensing membranes covalently attached to both the inert polymer substrate and conductive carbon contact. Angew Chem Int Ed Engl 2023;62:e202304674.

182. De Marco R, Clarke G, Pejcic B. Ion-selective electrode potentiometry in environmental analysis. Electroanalysis 2007;19:1987-2001.

183. Ding J, Qin W. Recent advances in potentiometric biosensors. TrAC Trends Anal Chem 2020;124:115803.

184. Bariya M, Nyein HYY, Javey A. Wearable sweat sensors. Nat Electron 2018;1:160-71.

185. Cuartero M, Parrilla M, Crespo GA. Wearable potentiometric sensors for medical applications. Sensors 2019;19:363.

186. Lyu Y, Gan S, Bao Y, et al. Solid-contact ion-selective electrodes: response mechanisms, transducer materials and wearable sensors. Membranes 2020;10:128.

187. Bakker E, Bühlmann P, Pretsch E. The phase-boundary potential model. Talanta 2004;63:3-20.

188. Bakker E, Nägele M, Schaller U, Pretsch E. Applicability of the phase boundary potential model to the mechanistic understanding of solvent polymeric membrane-based ion-selective electrodes. Electroanalysis 1995;7:817-22.

189. Bakker E, Chumbimuni-Torres K. Modern directions for potentiometric sensors. J Braz Chem Soc 2008;19:621-9.

190. Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020;49:4405-65.

191. Janata J, Josowicz M. Nernstian and non-nernstian potentiometry. Solid State Ionics 1997;94:209-15.

192. Migdalski J, Lewenstam A. Electrically enhanced sensitivity (EES) of ion-selective membrane electrodes and membrane-based ion sensors. Membranes 2022;12:763.

193. Amemiya S, Bühlmann P, Odashima K. A generalized model for apparently “non-Nernstian” equilibrium responses of ionophore-based ion-selective electrodes. 1. Independent complexation of the ionophore with primary and secondary ions. Anal Chem 2003;75:3329-39.

194. Jackson DT, Nelson PN. Preparation and properties of some ion selective membranes: a review. JMol Struct 2019;1182:241-59.

195. Hu J, Stein A, Bühlmann P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends Anal Chem 2016;76:102-14.

196. Valeri C, Pozzilli P, Leslie D. Glucose control in diabetes. Diabetes Metab Res Rev 2004;20:S1-8.

197. Musen G, Jacobson AM, Ryan CM, et al. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Glycemic control and hypoglycemia: is the loser the winner? Response to Perlmuter et al. Diabetes Care 2009;32:e46.

198. Militaru A, Frandes M, Lungeanu D. Smart wristbands as inexpensive and reliable non-dedicated solution for self-managing type 2 diabetes. In: 2015 E-Health and Bioengineering Conference (EHB); 2015 Nov 19-21; Iasi, Romania. IEEE; 2015. pp. 1-4.

199. Aslam MW, Zhu Z, Nandi AK. Feature generation using genetic programming with comparative partner selection for diabetes classification. Expert Syst Appl 2013;40:5402-12.

200. Ozana N, Beiderman Y, Anand A, et al. Noncontact speckle-based optical sensor for detection of glucose concentration using magneto-optic effect. J Biomed Opt 2016;21:65001.

201. Acharya U, Faust O, Adib Kadri N, Suri JS, Yu W. Automated identification of normal and diabetes heart rate signals using nonlinear measures. Comput Biol Med 2013;43:1523-9.

202. Zafar H, Channa A, Jeoti V, Stojanović GM. Comprehensive review on wearable sweat-glucose sensors for continuous glucose monitoring. Sensors 2022;22:638.

203. Moyer J, Wilson D, Finkelshtein I, Wong B, Potts R. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol Ther 2012;14:398-402.

204. Pullano SA, Greco M, Bianco MG, Foti D, Brunetti A, Fiorillo AS. Glucose biosensors in clinical practice: principles, limits and perspectives of currently used devices. Theranostics 2022;12:493-511.

205. Aihara M, Kubota N, Kadowaki T. Study of the correlation between tear glucose concentrations and blood glucose concentrations. Diabetes 2018;67:944-P.

206. Agrawal RP, Sharma N, Rathore MS, et al. Noninvasive method for glucose level estimation by saliva. J Diabetes Metab 2013;4:266. Available from: https://www.researchgate.net/profile/Vivek-Agarwal-13/publication/337591632_Noninvasive_Method_for_Glucose_Level_Estimation_by_Saliva/links/5ddf733aa6fdcc2837f05fb9/Noninvasive-Method-for-Glucose-Level-Estimation-by-Saliva.pdf.[Last accessed on 28 Apr 2024]

207. Zhang J, Xu J, Lim J, Nolan JK, Lee H, Lee CH. Wearable glucose monitoring and implantable drug delivery systems for diabetes management. Adv Healthc Mater 2021;10:e2100194.

208. Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical biosensors - sensor principles and architectures. Sensors 2008;8:1400-58.

209. Mohan A, Rajendran V, Mishra RK, Jayaraman M. Recent advances and perspectives in sweat based wearable electrochemical sensors. TrAC Trends Anal Chem 2020;131:116024.

210. Pirovano P, Dorrian M, Shinde A, et al. A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta 2020;219:121145.

211. Zhao C, Li X, Wu Q, Liu X. A thread-based wearable sweat nanobiosensor. Biosens Bioelectron 2021;188:113270.

212. Wang S, Wu Y, Gu Y, et al. Wearable sweatband sensor platform based on gold nanodendrite array as efficient solid contact of ion-selective electrode. Anal Chem 2017;89:10224-31.

213. Jeerapan I, Sempionatto JR, Pavinatto A, You JM, Wang J. Stretchable biofuel cells as wearable textile-based self-powered sensors. J Mater Chem A Mater 2016;4:18342-53.

214. Nyein HYY, Bariya M, Kivimäki L, et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci Adv 2019;5:eaaw9906.

215. Chen C, Dong ZQ, Shen JH, Chen HW, Zhu YH, Zhu ZG. 2D photonic crystal hydrogel sensor for tear glucose monitoring. ACS Omega 2018;3:3211-7.

216. Alexeev VL, Das S, Finegold DN, Asher SA. Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin Chem 2004;50:2353-60.

217. Jeon HJ, Kim S, Park S, et al. Optical assessment of tear glucose by smart biosensor based on nanoparticle embedded contact lens. Nano Lett 2021;21:8933-40.

218. Fang H, Kaur G, Wang B. Progress in boronic acid-based fluorescent glucose sensors. J Fluoresc 2004;14:481-9.

219. Chen L, Tse WH, Chen Y, McDonald MW, Melling J, Zhang J. Nanostructured biosensor for detecting glucose in tear by applying fluorescence resonance energy transfer quenching mechanism. Biosens Bioelectron 2017;91:393-9.

220. Yan Q, Peng B, Su G, Cohan BE, Major TC, Meyerhoff ME. Measurement of tear glucose levels with amperometric glucose biosensor/capillary tube configuration. Anal Chem 2011;83:8341-6.

221. Chu MX, Miyajima K, Takahashi D, et al. Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment. Talanta 2011;83:960-5.

222. Yao H, Shum AJ, Cowan M, Lähdesmäki I, Parviz BA. A contact lens with embedded sensor for monitoring tear glucose level. Biosens Bioelectron 2011;26:3290-6.

223. Kim J, Kim M, Lee MS, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat Commun 2017;8:14997.

224. Park J, Kim J, Kim SY, et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci Adv 2018;4:eaap9841.

225. Keum DH, Kim SK, Koo J, et al. Wireless smart contact lens for diabetic diagnosis and therapy. Sci Adv 2020;6:eaba3252.

226. Sempionatto JR, Brazaca LC, García-Carmona L, et al. Eyeglasses-based tear biosensing system: Non-invasive detection of alcohol, vitamins and glucose. Biosens Bioelectron 2019;137:161-70.

227. Matzeu G, Florea L, Diamond D. Advances in wearable chemical sensor design for monitoring biological fluids. Sens Actuators B Chem 2015;211:403-18.

228. Goldoni R, Scolaro A, Boccalari E, et al. Malignancies and biosensors: a focus on oral cancer detection through salivary biomarkers. Biosensors 2021;11:396.

229. Bel’skaya LV, Sarf EA, Makarova NA. Use of fourier transform ir spectroscopy for the study of saliva composition. J Appl Spectrosc 2018;85:445-51.

230. Malon RS, Sadir S, Balakrishnan M, Córcoles EP. Saliva-based biosensors: noninvasive monitoring tool for clinical diagnostics. Biomed Res Int 2014;2014:962903.

231. Dhanya M, Hegde S. Salivary glucose as a diagnostic tool in Type II diabetes mellitus: a case-control study. Niger J Clin Pract 2016;19:486-90.

232. Bihar E, Wustoni S, Pappa AM, Salama KN, Baran D, Inal S. A fully inkjet-printed disposable glucose sensor on paper. npj Flex Electron 2018;2:30.

233. Ciui B, Tertis M, Feurdean CN, et al. Cavitas electrochemical sensor toward detection of N-epsilon (carboxymethyl)lysine in oral cavity. Sens Actuators B Chem 2019;281:399-407.

234. Arakawa T, Tomoto K, Nitta H, et al. A wearable cellulose acetate-coated mouthguard biosensor for in-vivo salivary glucose measurement. Anal Chem 2020;92:12201-7.

235. Lim HR, Lee SM, Park S, et al. Smart bioelectronic pacifier for real-time continuous monitoring of salivary electrolytes. Biosens Bioelectron 2022;210:114329.

236. García-Carmona L, Martín A, Sempionatto JR, et al. Pacifier biosensor: toward noninvasive saliva biomarker monitoring. Anal Chem 2019;91:13883-91.

237. Fogh-andersen N, Altura BM, Altura BT, Siggaard-andersen O. Composition of interstitial fluid. Clin Chem 1995;41:1522-5.

238. Sun H, Zheng Y, Shi G, Haick H, Zhang M. Wearable clinic: from microneedle-based sensors to next-generation healthcare platforms. Small 2023;19:e2207539.

239. Dervisevic M, Alba M, Prieto-simon B, Voelcker NH. Skin in the diagnostics game: Wearable biosensor nano- and microsystems for medical diagnostics. Nano Today 2020;30:100828.

240. Friedel M, Thompson IAP, Kasting G, et al. Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat Biomed Eng 2023;7:1541-55.

241. Sharma S, Huang Z, Rogers M, Boutelle M, Cass AE. Evaluation of a minimally invasive glucose biosensor for continuous tissue monitoring. Anal Bioanal Chem 2016;408:8427-35.

242. Yang J, Gong X, Chen S, et al. Development of smartphone-controlled and microneedle-based wearable continuous glucose monitoring system for home-care diabetes management. ACS Sens 2023;8:1241-51.

243. Rao G, Glikfeld P, Guy RH. Reverse iontophoresis: development of a noninvasive approach for glucose monitoring. Pharm Res 1993;10:1751-5.

244. Yao Y, Chen J, Guo Y, et al. Integration of interstitial fluid extraction and glucose detection in one device for wearable non-invasive blood glucose sensors. Biosens Bioelectron 2021;179:113078.

245. De la Paz E, Barfidokht A, Rios S, Brown C, Chao E, Wang J. Extended noninvasive glucose monitoring in the interstitial fluid using an epidermal biosensing patch. Anal Chem 2021;93:12767-75.

246. Imani S, Bandodkar AJ, Mohan AMV, et al. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat Commun 2016;7:11650.

247. Hong YJ, Lee H, Kim J, et al. Multifunctional wearable system that integrates sweat-based sensing and vital-sign monitoring to estimate pre-/post-exercise glucose levels. Adv Funct Mater 2018;28:1805754.

248. Gil B, Anastasova S, Yang GZ. A smart wireless ear-worn device for cardiovascular and sweat parameter monitoring during physical exercise: design and performance results. Sensors 2019;19:1616.

249. Yu Y, Nassar J, Xu C, et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci Robot 2020;5:eaaz7946.

250. Sempionatto JR, Lin M, Yin L, et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat Biomed Eng 2021;5:737-48.

251. Sempionatto JR, Nakagawa T, Pavinatto A, et al. Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip 2017;17:1834-42.

252. Park J, Sempionatto JR, Kim J, et al. Microscale biosensor array based on flexible polymeric platform toward lab-on-a-needle: real-time multiparameter biomedical assays on curved needle surfaces. ACS Sens 2020;5:1363-73.

253. Yokus MA, Songkakul T, Pozdin VA, Bozkurt A, Daniele MA. Wearable multiplexed biosensor system toward continuous monitoring of metabolites. Biosens Bioelectron 2020;153:112038.

254. Misra S, Oliver NS. Utility of ketone measurement in the prevention, diagnosis and management of diabetic ketoacidosis. Diabet Med 2015;32:14-23.

255. Forrow NJ, Sanghera GS, Walters SJ, Watkin JL. Development of a commercial amperometric biosensor electrode for the ketone D-3-hydroxybutyrate. Biosens Bioelectron 2005;20:1617-25.

256. Wang CC, Hennek JW, Ainla A, et al. A paper-based “pop-up” electrochemical device for analysis of beta-hydroxybutyrate. Anal Chem 2016;88:6326-33.

257. Teymourian H, Moonla C, Tehrani F, et al. Microneedle-based detection of ketone bodies along with glucose and lactate: toward real-time continuous interstitial fluid monitoring of diabetic ketosis and ketoacidosis. Anal Chem 2020;92:2291-300.

258. Moon JM, Del Caño R, Moonla C, et al. Self-testing of ketone bodies, along with glucose, using touch-based sweat analysis. ACS Sens 2022;7:3973-81.

259. Vargas E, Teymourian H, Tehrani F, et al. Enzymatic/immunoassay dual-biomarker sensing chip: towards decentralized insulin/glucose detection. Angew Chem Int Ed Engl 2019;58:6376-9.

260. Liu S, Shen Z, Deng L, Liu G. Smartphone assisted portable biochip for non-invasive simultaneous monitoring of glucose and insulin towards precise diagnosis of prediabetes/diabetes. Biosens Bioelectron 2022;209:114251.

261. Buxton OM, Cain SW, O’Connor SP, et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci Transl Med 2012;4:129ra43.

262. Munje RD, Muthukumar S, Prasad S. Lancet-free and label-free diagnostics of glucose in sweat using Zinc Oxide based flexible bioelectronics. Sen Actuators B Chem 2017;238:482-90.

263. Tian G, Zhou Z, Li M, Li X, Xu T, Zhang X. Oriented antibody-assembled metal-organic frameworks for persistent wearable sweat cortisol detection. Anal Chem 2023;95:13250-7.

264. Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids 2009;37:1-17.

265. Kim J, Sempionatto JR, Imani S, et al. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv Sci 2018;5:1800880.

266. Tehrani F, Teymourian H, Wuerstle B, et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat Biomed Eng 2022;6:1214-24.

267. Wang M, Yang Y, Min J et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat Biomed Eng 2022;6:1225-35.

268. Rodríguez-Rodríguez I, Rodríguez JV, Chatzigiannakis I, Zamora Izquierdo MÁ. On the possibility of predicting glycaemia ‘on the fly’ with constrained iot devices in type 1 diabetes mellitus patients. Sensors 2019;19:4538.

269. Sudharsan B, Peeples M, Shomali M. Hypoglycemia prediction using machine learning models for patients with type 2 diabetes. J Diabetes Sci Technol 2015;9:86-90.

270. Reifman J, Rajaraman S, Gribok A, Ward WK. Predictive monitoring for improved management of glucose levels. J Diabetes Sci Technol 2007;1:478-86.

271. Li K, Liu C, Zhu T, Herrero P, Georgiou P. GluNet: a deep learning framework for accurate glucose forecasting. IEEE J Biomed Health Inform 2020;24:414-23.

272. Gu W, Zhou Y, Zhou Z, et al. SugarMate: non-intrusive blood glucose monitoring with smartphones. Proc ACM Interact Mob Wearable Ubiquitous Technol 2017;1:1-27.

273. Beauchamp J, Bunescu R, Marling C, Li Z, Liu C. LSTMs and deep residual networks for carbohydrate and bolus recommendations in type 1 diabetes management. Sensors 2021;21:3303.

274. Li K, Daniels J, Liu C, Herrero P, Georgiou P. Convolutional recurrent neural networks for glucose prediction. IEEE J Biomed Health Inform 2020;24:603-13.

275. Zhu T, Li K, Kuang L, Herrero P, Georgiou P. An insulin bolus advisor for type 1 diabetes using deep reinforcement learning. Sensors 2020;20:5058.

276. Aliberti A, Pupillo I, Terna S, et al. A multi-patient data-driven approach to blood glucose prediction. IEEE Access 2019;7:69311-25.

277. Deng Y, Lu L, Aponte L, et al. Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients. NPJ Digit Med 2021;4:109.

278. Bois M, El Yacoubi MA, Ammi M. Adversarial multi-source transfer learning in healthcare: application to glucose prediction for diabetic people. Comput Methods Programs Biomed 2021;199:105874.

279. Sankhala D, Sardesai AU, Pali M, et al. A machine learning-based on-demand sweat glucose reporting platform. Sci Rep 2022;12:2442.

280. Bertachi A, Viñals C, Biagi L, et al. Prediction of nocturnal hypoglycemia in adults with type 1 diabetes under multiple daily injections using continuous glucose monitoring and physical activity monitor. Sensors 2020;20:1705.

281. Plis K, Bunescu R, Marling C, Shubrook J, Schwartz F. A machine learning approach to predicting blood glucose levels for diabetes management. In: Workshops at the Twenty-Eighth AAAI conference on artificial intelligence. 2014. Available from: http://smarthealth.cs.ohio.edu/pubs/AAAI-WS-2014.pdf. [Last accessed on 15 Apr 2024]

282. Yang J, Li L, Shi Y, Xie X. An ARIMA model with adaptive orders for predicting blood glucose concentrations and hypoglycemia. IEEE J Biomed Health Inform 2019;23:1251-60.

283. Parrilla M, Detamornrat U, Domínguez-Robles J, Tunca S, Donnelly RF, De Wael K. Wearable microneedle-based array patches for continuous electrochemical monitoring and drug delivery: toward a closed-loop system for methotrexate treatment. ACS Sens 2023;8:4161-70.

284. Teymourian H, Parrilla M, Sempionatto JR, et al. Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sens 2020;5:2679-700.

285. Ma R, Shao R, An X, Zhang Q, Sun S. Recent advancements in noninvasive glucose monitoring and closed-loop management systems for diabetes. J Mater Chem B 2022;10:5537-55.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/