Volume

Volume 1, Issue 2 (December, 2021) – 5 articles

Cover Picture: In this paper, we design a feedforward temperature control system for a high-speed railway air conditioner. We construct the geometric models of two typical types of compartments in locomotives. Then, we adopt numerical simulation methods to calculate the optimal air volume for each passenger distribution or body type scene. By supplying the optimal air volume into the room, the efficiency of energy-saving is considerable. Compared with the original air conditioning system, the optimal volume control method avoids waste of energy when the compressor of the old system should be switched on and off frequently and provides a reference to the temperature field as a feedforward loop to comfort passengers. Then, we utilize the YOLOv3 network as the passenger detection method, which provides good test effectiveness in the actual scenario. We tested the detection efficiency in a similar scene. Compared with the original temperature adjusting process, we provide an optimal signal to the valve and ventilating fan and input the optimal air volume to reduce the negative impact of changing heat exhaled by passengers in and out in real time.
view this paper

Research Article

Actions for 0 selected articles

Complex Engineering Systems
ISSN 2770-6249 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/