REFERENCES

1. Yang QR, Fan QN, Peng J, Chou SL, Liu HK, Wang J. Recent progress on alloy-based anode materials for potassium-ion batteries. Microstructures 2023;3:2023013.

2. Yu Z, Sun Q, Li H, et al. Tuning single-phase medium-entropy oxides derived from nanoporous NiCuCoMn alloy as a highly stable anode for Li-ion batteries. Rare Met 2023;42:2982-92.

3. Zhao SM, Wang BS, Zhu N, Huang Y, Wang F. Dual-band electrochromic materials for energy-saving smart windows. Carbon Neutralization 2023;2:4-27.

4. Zhang Z, Xie G, Chen Y, et al. Regulating the intrinsic electronic structure of carbon nanofibers with high-spin state Ni for sodium storage with high-power density. J Mater Sci Technol 2024;171:16-23.

5. Yan L, Zong L, Sun Q, et al. Phase separation-hydrogen etching-derived Cu-decorated Cu-Mn bimetallic oxides with oxygen vacancies boosting superior sodium-ion storage kinetics. J Energy Chem 2023;80:163-73.

6. Chen Y, Sun H, Guo J, et al. Research on carbon-based and metal-based negative electrode materials via DFT calculation for high potassium storage performance: a review. Energy Mater 2023;3:300044.

7. Abdelhafiz A, Wang B, Harutyunyan AR, Li J. Carbothermal shock synthesis of high entropy oxide catalysts: dynamic structural and chemical reconstruction boosting the catalytic activity and stability toward oxygen evolution reaction. Adv Energy Mater 2022;12:2200742.

8. Li L, Dai X, Lu M, et al. Electron-enriched single-Pd-sites on g-C3N4 nanosheets achieved by in-situ anchoring twinned Pd nanoparticles for efficient CO2 photoreduction. Advanced Powder Materials 2024;3:100170.

9. Khan I, Baig N, Bake A, et al. Robust electrocatalysts decorated three-dimensional laser-induced graphene for selective alkaline OER and HER. Carbon 2023;213:118292.

10. Li H, Du H, Luo H, Wang H, Zhu W, Zhou Y. Recent developments in metal nanocluster-based catalysts for improving photocatalytic CO2 reduction performance. Microstructures 2023;3:2023024.

11. Wang Y, Wang D, Li Y. Atom-level interfacial synergy of single-atom site catalysts for electrocatalysis. J Energy Chem 2022;65:103-15.

12. Li Y, Zhang J, Chen Q, Xia X, Chen M. Emerging of heterostructure materials in energy storage: a review. Adv Mater 2021;33:e2100855.

13. Yang Y, Li P, Zheng X, et al. Anion-exchange membrane water electrolyzers and fuel cells. Chem Soc Rev 2022;51:9620-93.

14. Li C, Zhang Z, Chen Y, et al. Architecting braided porous carbon fibers based on high-density catalytic crystal planes to achieve highly reversible sodium-ion storage. Adv Sci 2022;9:e2104780.

15. Li H, Chang SH, Zhang MM. Research progress on properties tuning and products of Cu-based catalyst in electrocatalytic CO2 reduction. Copper Eng 2023;6:38-50.

16. Zhang M, Wang J, Xue H, et al. Acceptor-doping accelerated charge separation in Cu2O photocathode for photoelectrochemical water splitting: theoretical and experimental studies. Angew Chem Int Ed 2020;59:18463-7.

17. Wang Y, Sun Y, Li H, et al. Controlled etching to immobilize highly dispersed Fe in MXene for electrochemical ammonia production. Carbon Neutralization 2022;1:117-25.

18. Kang S, Cheng J, Gao W, Cui L. Toward safer lithium metal batteries: a review. Energy Mater 2023;3:300043.

19. Liu H, Qin H, Kang J, et al. A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting. Chem Eng J 2022;435:134898.

20. Wang Z, Berbille A, Feng Y, et al. Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders. Nat Commun 2022;13:130.

21. Li L, Wang P, Shao Q, Huang X. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv Mater 2021;33:e2004243.

22. Wang Z, Richards D, Singh N. Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction. Catal Sci Technol 2021;11:705-25.

23. Ma W, He X, Wang W, Xie S, Zhang Q, Wang Y. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem Soc Rev 2021;50:12897-914.

24. Chen M, Rao P, Miao Z, et al. Strong metal-support interaction of Pt-based electrocatalysts with transition metal oxides/nitrides/carbides for oxygen reduction reaction. Microstructures 2023;3:2023025.

25. Siu JC, Fu N, Lin S. Catalyzing electrosynthesis: a homogeneous electrocatalytic approach to reaction discovery. ACC Chem Res 2020;53:547-60.

26. Mchugh PJ, Stergiou AD, Symes MD. Decoupled electrochemical water splitting: from fundamentals to applications. Adv Energy Mater 2020;10:2002453.

27. Wang J, Cui W, Liu Q, Xing Z, Asiri AM, Sun X. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater 2016;28:215-30.

28. Zhao C, Zhang X, Xu S, et al. Construction of amorphous CoFeOx(OH)y/MoS2/CP electrode for superior OER performance. Int J Hydrogen Energy 2022;47:28859-68.

29. Jin J, Ge J, Zhao X, Wang Y, Zhang F, Lei X. An amorphous NiCuFeP@Cu3P nanoarray for an efficient hydrogen evolution reaction. Inorg Chem Front 2022;9:1446-55.

30. Cheng D, Wang Z, Chen C, Zhou K. Crystalline/amorphous Co2P@FePO4 core/shell nanoheterostructures supported on porous carbon microspheres as efficient oxygen reduction electrocatalysts. Chem Mater 2019;31:8026-34.

31. Xu Y, Guo Y, Sheng Y, et al. Controlled boron incorporation tuned two-phase interfaces and Lewis acid sites in bismuth nanosheets for driving CO2 electroreduction to formate. J Mater Chem A 2023;11:18434-40.

32. Shi M, Bao D, Li S, Wulan B, Yan J, Jiang Q. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv Energy Mater 2018;8:1800124.

33. Wang X, Tian H, Yu X, Chen L, Cui X, Shi J. Advances and insights in amorphous electrocatalyst towards water splitting. Chin J Catal 2023;51:5-48.

34. Zhou Y, Fan HJ. Progress and challenge of amorphous catalysts for electrochemical water splitting. ACS Mater Lett 2021;3:136-47.

35. Zhai W, Sakthivel T, Chen F, Du C, Yu H, Dai Z. Amorphous materials for elementary-gas-involved electrocatalysis: an overview. Nanoscale 2021;13:19783-811.

36. Zhang C, Wang SY, Rong JF, Mi WL. Amorphous catalysts for electrochemical water splitting. China Pet Process Pe 2022;24:1-13. Available from: http://www.chinarefining.com/EN/Y2022/V24/I2/1 [Last accessed on 10 Apr 2024].

37. Wang H, Qi J, Yang N, et al. Dual-defects adjusted crystal-field splitting of LaCo1-xNixO3-δ hollow multishelled structures for efficient oxygen evolution. Angew Chem Int Ed 2020;59:19691-5.

38. Anantharaj S, Noda S. Amorphous catalysts and electrochemical water splitting: an untold story of harmony. Small 2020;16:e1905779.

39. Dan H, Chen L, Li Z, He X, Ding Y. Preparation of amorphous ZrO2 powders by hydrothermal-assisted sol-gel method. Inorg Chem Commun 2022;138:109272.

40. Liu H, Tariq NUH, Han R, et al. Development of hydrogen-free fully amorphous silicon oxycarbide coating by thermal organometallic chemical vapor deposition technique. J Non-Cryst Solids 2022;575:121204.

41. Wu Y, Zhang Z, Xu K, et al. A study on the formation conditions of amorphous nickel-phosphorus (Ni-P) alloy by laser-assisted electrodeposition. Appl Surf Sci 2021;535:147707.

42. Olowoyo JO, Kriek RJ. Recent progress on bimetallic-based spinels as electrocatalysts for the oxygen evolution reaction. Small 2022;18:e2203125.

43. Kumar A, Bhattacharyya S. Porous NiFe-oxide nanocubes as bifunctional electrocatalysts for efficient water-splitting. ACS Appl Mater Interfaces 2017;9:41906-15.

44. Nguyen TX, Liao Y, Lin C, Su Y, Ting J. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv Funct Mater 2021;31:2101632.

45. Qiu H, Fang G, Gao J, et al. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction. ACS Mater Lett 2019;1:526-33.

46. Wang H, Liu R, Li Y, et al. Durable and efficient hollow porous oxide spinel microspheres for oxygen reduction. Joule 2018;2:337-48.

47. Fang L, Jiang Z, Xu H, et al. Crystal-plane engineering of NiCo2O4 electrocatalysts towards efficient overall water splitting. J Catal 2018;357:238-46.

48. Baek J, Hossain MD, Mukherjee P, et al. Synergistic effects of mixing and strain in high entropy spinel oxides for oxygen evolution reaction. Nat Commun 2023;14:5936.

49. Altaf A, Sohail M, Altaf M, Nafady A, Sher M, Wahab MA. Enhanced electrocatalytic activity of amorphized LaCoO3 for oxygen evolution reaction. Chem Asian J 2023:e202300870.

50. Smith RDL, Sporinova B, Fagan RD, Trudel S, Berlinguette CP. Facile photochemical preparation of amorphous iridium oxide films for water oxidation catalysis. Chem Mater 2014;26:1654-9.

51. Do VH, Prabhu P, Jose V, et al. Pd-PdO nanodomains on amorphous Ru metallene oxide for high-performance multifunctional electrocatalysis. Adv Mater 2023;35:e2208860.

52. Zhang L, Jang H, Liu H, et al. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: a robust pH-universal oxygen evolution electrocatalyst. Angew Chem Int Ed 2021;60:18821-9.

53. Li Y, Zhang X, Liu L, et al. Ultra-low Pt doping and Pt-Ni pair sites in amorphous/crystalline interfacial electrocatalyst enable efficient alkaline hydrogen evolution. Small 2023;19:e2300368.

54. Wang W, Shi X, He T, et al. Tailoring amorphous PdCu nanostructures for efficient C-C cleavage in ethanol electrooxidation. Nano Lett 2022;22:7028-33.

55. Jiang S, Zhu L, Yang Z, Wang Y. Self-supported hierarchical porous FeNiCo-based amorphous alloys as high-efficiency bifunctional electrocatalysts toward overall water splitting. Int J Hydrogen Energy 2021;46:36731-41.

56. Zhang X, Li L, Guo Y, Liu D, You T. Amorphous flower-like molybdenum-sulfide-@-nitrogen-doped-carbon-nanofiber film for use in the hydrogen-evolution reaction. J Colloid Interface Sci 2016;472:69-75.

57. Chen Z, Duan Z, Wang Z, et al. Amorphous cobalt oxide nanoparticles as active water-oxidation catalysts. ChemCatChem 2017;9:3641-5.

58. Pang Y, Xu W, Zhu S, et al. Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting. J Mater Sci Technol 2021;82:96-104.

59. Hu L, Zhao D, Liu C, et al. Amorphous CoB nanoarray as a high-efficiency electrocatalyst for nitrite reduction to ammonia. Inorg Chem Front 2022;9:6075-9.

60. Wang Z, You J, Zhao Y, et al. Research progress on high entropy alloys and high entropy derivatives as OER catalysts. J Environ Chem Eng 2023;11:109080.

61. Wang H, Wei R, Li X, Ma X, Hao X, Guan G. Nanostructured amorphous Fe29Co27Ni23Si9B12 high-entropy-alloy: an efficient electrocatalyst for oxygen evolution reaction. J Mater Sci Technol 2021;68:191-8.

62. Wang Q, Li J, Li Y, Shao G, Jia Z, Shen B. Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction. Nano Res 2022;15:8751-9.

63. Li M, Song M, Ni W, et al. Activating surface atoms of high entropy oxides for enhancing oxygen evolution reaction. Chin Chem Lett 2023;34:107571.

64. Yan G, Wang Y, Zhang Z, et al. Nanoparticle-decorated ultrathin La2O3 nanosheets as an efficient electrocatalysis for oxygen evolution reactions. Nanomicro Lett 2020;12:49.

65. Ghobrial S, Kirk DW, Thorpe SJ. Amorphous Ni-Nb-Y alloys as hydrogen evolution electrocatalysts. Electrocatalysis 2019;10:243-52.

66. Sun Y, Zhong S, Xin H, Zhang F, Chen L, Li X. Enhancement in oxidative property on amorphous rare earth doped Mn catalysts. Catal Commun 2016;77:94-7.

67. Gao J, Hou J, Kong L. Amorphous cobalt boride alloy synthesized by liquid phase methods as electrode materials for electrochemical capacitors. Part Part Syst Charact 2021;38:2100020.

68. Kong L, Dang S, Nie K, Han G, Tian G. Preparation of layered interconnected Si-Li2MnSiO4 electrode materials for the positive electrode of battery-type capacitors. Ionics 2022;28:5189-98.

69. Ye Y, Li K, Zhang W, Liu C. Precipitation of cesium lead halide perovskite nanocrystals in glasses based on liquid phase separation. J Am Ceram Soc 2022;105:6105-15.

70. Zhang H, Geng S, Ouyang M, Yadegari H, Xie F, Riley DJ. A self-reconstructed bifunctional electrocatalyst of pseudo-amorphous nickel carbide @ iron oxide network for seawater splitting. Adv Sci 2022;9:e2200146.

71. Wang A, Lin B, Zhang H, et al. Ambient temperature NO oxidation over Cr-based amorphous mixed oxide catalysts: effects from the second oxide components. Catal Sci Technol 2017;7:2362-70.

72. Liu W, Liu H, Dang L, et al. Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution. Adv Funct Mater 2017;27:1603904.

73. Hasannaeimi V, Wang X, Salloom R, Xia Z, Schroers J, Mukherjee S. Nanomanufacturing of non-noble amorphous alloys for electrocatalysis. ACS Appl Energy Mater 2020;3:12099-107.

74. Balram A, Zhang H, Santhanagopalan S. Enhanced oxygen evolution reaction electrocatalysis via electrodeposited amorphous α-phase nickel-cobalt hydroxide nanodendrite forests. ACS Appl Mater Interfaces 2017;9:28355-65.

75. Wang W, Zhang K, Qiao Z, Li L, Liu P, Yang Y. Hydrodeoxygenation of p-cresol on unsupported Ni-W-Mo-S catalysts prepared by one step hydrothermal method. Catal Commun 2014;56:17-22.

76. Esquius J, Morgan DJ, Spanos I, Hewes DG, Freakley SJ, Hutchings GJ. Effect of base on the facile hydrothermal preparation of highly active IrOx oxygen evolution catalysts. ACS Appl Energy Mater 2020;3:800-9.

77. Chen G, Zhu Y, Chen HM, et al. An amorphous nickel-iron-based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction. Adv Mater 2019;31:e1900883.

78. Feng D, Wang P, Qin R, et al. Flower-like amorphous MoO3-x stabilized Ru single atoms for efficient overall water/seawater splitting. Adv Sci 2023;10:e2300342.

79. Zhong R, Liao Y, Peng L, et al. Silica-carbon nanocomposite acid catalyst with large mesopore interconnectivity by vapor-phase assisted hydrothermal treatment. ACS Sustain Chem Eng 2018;6:7859-70.

80. Karki S, Ingole PG. Development of polymer-based new high performance thin-film nanocomposite nanofiltration membranes by vapor phase interfacial polymerization for the removal of heavy metal ions. Chem Eng J 2022;446:137303.

81. Xia J, Li XZ, Huang X, et al. Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses. Nanoscale 2016;8:2063-70.

82. Grüner C, Liedtke S, Bauer J, Mayr SG, Rauschenbach B. Morphology of thin films formed by oblique physical vapor deposition. ACS Appl Nano Mater 2018;1:1370-6.

83. Wei TR, Zhang SS, Liu Q, Qiu Y, Luo J, Liu X. Oxygen vacancy-rich amorphous copper oxide enables highly selective electroreduction of carbon dioxide to ethylene. Acta Physico Chimica Sinica 2022;2:20220702.

84. Hong YL, Liu Z, Wang L, et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 2020;369:670-4.

85. Zhang ZJ, Sun HY, Chen YF, et al. Modulating p-d orbital hybridization by CuO/Cu nanoparticles enables carbon nanofibers high cycling stability as anode for sodium storage. Rare Met 2023;42:4039-47.

86. Su G, Hadjiev VG, Loya PE, et al. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett 2015;15:506-13.

87. Wu G, Zheng X, Cui P, et al. A general synthesis approach for amorphous noble metal nanosheets. Nat Commun 2019;10:4855.

88. Li K, Chen W. Recent progress in high-entropy alloys for catalysts: synthesis, applications, and prospects. Mater Today Energy 2021;20:100638.

89. Ricciardella F, Vollebregt S, Kurganova E, Giesbers AJM, Ahmadi M, Sarro PM. Growth of multi-layered graphene on molybdenum catalyst by solid phase reaction with amorphous carbon. 2D Mater 2019;6:035012.

90. Sundeev R, Shalimova A, Veligzhanin A, Glezer A, Zubavichus Y. Difference between local atomic structures of the amorphous Ti2NiCu alloy prepared by melt quenching and severe plastic deformation. Mater Lett 2018;214:115-8.

91. Yang X, Xu W, Cao S, et al. An amorphous nanoporous PdCuNi-S hybrid electrocatalyst for highly efficient hydrogen production. Appl Catal B Environ 2019;246:156-65.

92. Li H, Zhu Z, Wang Y, Chen S, Liu C, Zhang H. Disordered and oxygen vacancy-rich NiFe hydroxides/oxides in situ grown on amorphous ribbons for boosted alkaline water oxidation. J Electroanal Chem 2021;880:114918.

93. Wang ZJ, Li MX, Yu JH, Ge XB, Liu YH, Wang WH. Low-iridium-content IrNiTa metallic glass films as intrinsically active catalysts for hydrogen evolution reaction. Adv Mater 2020;32:e1906384.

94. Gou J, Qiao Z, Yu Z, et al. Architecting a 3D continuous C/CuVO3@Cu composite anode for lithium-ion storage. Surf Innov 2023;11:70-8.

95. Cole KM, Prabhudev S, Botton GA, Kirk DW, Thorpe SJ. Amorphous Ni-based nanoparticles for alkaline oxygen evolution. ACS Appl Nano Mater 2020;3:10522-30.

96. Duan Y, Yu ZY, Hu SJ, et al. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew Chem Int Ed 2019;58:15772-7.

97. Li Z, Xie Y, Huang Z, et al. Amorphization of LaCoO3 perovskite nanostructures for efficient oxygen evolution. ACS Appl Nano Mater 2022;5:14209-15.

98. Zhang M, Xu W, Ma CL, Yu J, Liu YT, Ding B. Highly active and selective electroreduction of N2 by the catalysis of Ga single atoms stabilized on amorphous TiO2 nanofibers. ACS Nano 2022;16:4186-96.

99. Lu J, Chen S, Zhuo Y, Mao X, Liu D, Wang Z. Greatly boosting seawater hydrogen evolution by surface amorphization and morphology engineering on MoO2/Ni3(PO4)2. Adv Funct Mater 2023;33:2308191.

100. Li X, Cai W, Li D, Xu J, Tao H, Liu B. Amorphous alloys for electrocatalysis: the significant role of the amorphous alloy structure. Nano Res 2023;16:4277-88.

101. Shen Y, Mai Y. Structural studies of amorphous and crystallized tungsten nitride thin films by EFED, XRD and TEM. Appl Surf Sci 2000;167:59-68.

102. Zhan C, Huang D, Hu X, et al. Mechanical property enhancement of NbTiZr refractory medium-entropy alloys due to Si-induced crystalline-to-amorphous transitions. Surf Coat Technol 2022;433:128144.

103. Dong C, Liu ZW, Liu JY, et al. Modest oxygen-defective amorphous manganese-based nanoparticle mullite with superior overall electrocatalytic performance for oxygen reduction reaction. Small 2017;13:1603903.

104. Pan T, Wang L, Shen Y, et al. Amorphous chromium oxide with hollow morphology for nitrogen electrochemical reduction under ambient conditions. ACS Appl Mater Interfaces 2022;14:14474-81.

105. Meng X, Yuan B, Liu Y, Zhao Z, Li K, Lin Y. Amorphous Fe-Mo-O nanostructures for catalytic water oxidation. ACS Appl Nano Mater 2022;5:9427-34.

106. Xu L, Tian Y, Deng D, et al. Cu nanoclusters/FeN4 amorphous composites with dual active sites in n-doped graphene for high-performance Zn-Air batteries. ACS Appl Mater Interfaces 2020;12:31340-50.

107. Chen C, Yan X, Wu Y, et al. Oxidation of metallic Cu by supercritical CO2 and control synthesis of amorphous nano-metal catalysts for CO2 electroreduction. Nat Commun 2023;14:1092.

108. Kang J, Yang X, Hu Q, Cai Z, Liu LM, Guo L. Recent progress of amorphous nanomaterials. Chem Rev 2023;123:8859-941.

109. Banko L, Krysiak OA, Pedersen JK, et al. Unravelling composition-activity-stability trends in high entropy alloy electrocatalysts by using a data-guided combinatorial synthesis strategy and computational modeling. Adv Energy Mater 2022;12:2103312.

110. Huang J, Fu C, Chen J, Senthilkumar N, Peng X, Wen Z. The enhancement of selectivity and activity for two-electron oxygen reduction reaction by tuned oxygen defects on amorphous hydroxide catalysts. CCS Chem 2022;4:566-83.

111. Fang Z, Shen B, Lu J, Fan K, Deng J. DFT study of electron transfer between B and Ni in Ni-B amorphous alloy. Acta Chimica Sinica 1999;57:894-900. Available from: https://sioc-journal.cn/Jwk_hxxb/EN/Y1999/V57/I8/894 [Last accessed on 9 Apr 2024].

112. He Y, Liu L, Zhu C, et al. Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production. Nat Catal 2022;5:212-21.

113. Zhang D, Li H, Lu H, et al. Unlocking the performance of ternary metal (hydro)oxide amorphous catalysts via data-driven active-site engineering. Energy Environ Sci 2023;16:5065-75.

114. Bui TS, Lovell EC, Daiyan R, Amal R. Defective metal oxides: lessons from CO2 RR and applications in NOxRR. Adv Mater 2023;35:e2205814.

115. Ye L, Wang J, Zhang Y, Zhang M, Jing X, Gong Y. A self-supporting electrode with in-situ partial transformation of Fe-MOF into amorphous NiFe-LDH for efficient oxygen evolution reaction. Appl Surf Sci 2021;556:149781.

116. Zhao J, Ren X, Ma H, et al. Synthesis of self-supported amorphous CoMoO4 nanowire array for highly efficient hydrogen evolution reaction. ACS Sustain Chem Eng 2017;5:10093-8.

117. Yang P, Wang B, Liu Z. Towards activation of amorphous MoSx via Cobalt doping for enhanced electrocatalytic hydrogen evolution reaction. Int J Hydrogen Energy 2018;43:23109-17.

118. Wang D, Xie Y, Wu Z. Amorphous phosphorus-doped MoS2 catalyst for efficient hydrogen evolution reaction. Nanotechnology 2019;30:205401.

119. Ren H, Sun X, Du C, et al. Amorphous Fe-Ni-P-B-O nanocages as efficient electrocatalysts for oxygen evolution reaction. ACS Nano 2019;13:12969-79.

120. Dhandapani H, Madhu R, De A, Salem MA, Ramesh Babu B, Kundu S. Tuning the surface electronic structure of amorphous NiWO4 by doping Fe as an electrocatalyst for OER. Inorg Chem 2023;62:11817-28.

121. Sun J, Guo N, Shao Z, et al. A facile strategy to construct amorphous spinel-based electrocatalysts with massive oxygen vacancies using ionic liquid dopant. Adv Energy Mater 2018;8:1800980.

122. Gao YQ, Liu XY, Yang GW. Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts. Nanoscale 2016;8:5015-23.

123. Yang M, Zhao M, Yuan J, et al. Oxygen vacancies and interface engineering on amorphous/crystalline CrOx-Ni3 N heterostructures toward high-durability and kinetically accelerated water splitting. Small 2022;18:e2106554.

124. Gao L, Guo C, Sun X, et al. CoFeOx(OH)y/CoOx(OH)y core/shell structure with amorphous interface as an advanced catalyst for electrocatalytic water splitting. Electrochim Acta 2020;341:136038.

125. Sun A, Qiu Y, Wang Z, et al. Interface engineering on super-hydrophilic amorphous/crystalline NiFe-based hydroxide/selenide heterostructure nanoflowers for accelerated industrial overall water splitting at high current density. J Colloid Interface Sci 2023;650:573-81.

126. Zhang HM, Zuo LH, Gao YH, et al. Amorphous high-entropy phosphoxides for efficient overall alkaline water/seawater splitting. J Mater Sci Technol 2023;173:1-10.

127. Cheng C, Liu T, Wang Y, et al. Amorphous Sn(HPO4)2-derived phosphorus-modified Sn/SnO core/shell catalyst for efficient CO2 electroreduction to formate. J Energy Chem 2023;81:125-31.

128. Smith G, Brower W, Matyjaszczyk M, Pettit T. Metallic glasses: new catalyst systems. Stud Surf Sci Catal 1981;7:355-63.

129. Kreysa G, Håkansson B. Electrocatalysis by amorphous metals of hydrogen and oxygen evolution in alkaline solution. J Electroanal Chem Interfacial Electrochem 1986;201:61-83.

130. Lian K, Thorpe S, Kirk D. Electrochemical and surface characterization of electrocatalytically active amorphous Ni Co alloys. Electrochim Acta 1992;37:2029-41.

131. Deng J, Li H, Wang W. Progress in design of new amorphous alloy catalysts. Catal Today 1999;51:113-25.

132. Janik-czachor M, Szummer A, Molnar A, et al. Electrochemical modification of Cu-Zr amorphous alloys for catalysts. Electrochim Acta 2000;45:3295-304.

133. Li H, Xu Y. Liquid phase benzene hydrogenation to cyclohexane over modified Ni-P amorphous catalysts. Mater Lett 2001;51:101-7.

134. Ramos-sánchez G, Pierna A, Solorza-feria O. Amorphous Ni59Nb40PtxM1-x (M=Ru,Sn) electrocatalysts for oxygen reduction reaction. J Non-Cryst Solids 2008;354:5165-8.

135. Fernandes R, Patel N, Miotello A. Efficient catalytic properties of Co-Ni-P-B catalyst powders for hydrogen generation by hydrolysis of alkaline solution of NaBH4. Int J Hydrogen Energy 2009;34:2893-900.

136. Fugane K, Mori T, Ou DR, et al. Activity of oxygen reduction reaction on small amount of amorphous CeOx promoted Pt cathode for fuel cell application. Electrochim Acta 2011;56:3874-83.

137. Cavalca F, Ferragut R, Aghion S, et al. Nature and distribution of stable subsurface oxygen in copper electrodes during electrochemical CO2 reduction. J Phys Chem C 2017;121:25003-9.

138. Lv CD, Yan CS, Chen G, et al. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew Chem Int Ed 2018;130:6181-4.

139. Tielens F, Gierada M, Handzlik J, Calatayud M. Characterization of amorphous silica based catalysts using DFT computational methods. Catal Today 2020;354:3-18.

140. Liu H, Xi C, Xin J, et al. Free-standing nanoporous NiMnFeMo alloy: an efficient non-precious metal electrocatalyst for water splitting. Chem Eng J 2021;404:126530.

141. Pu Z, Amiinu IS, Cheng R, et al. Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives. Nanomicro Lett 2020;12:21.

142. Zheng X, Li P, Dou S, et al. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ Sci 2021;14:2809-58.

143. Al-naggar AH, Shinde NM, Kim J, Mane RS. Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coord Chem Rev 2023;474:214864.

144. Xing M, Zhu S, Zeng X, Wang S, Liu Z, Cao D. Amorphous/Crystalline Rh(OH)3/CoP heterostructure with hydrophilicity/aerophobicity feature for all-pH hydrogen evolution reactions. Adv Energy Mater 2023;13:2302376.

145. Cao D, Dong Y, Tang Y, et al. Amorphous manganese-cobalt nanosheets as efficient catalysts for hydrogen evolution reaction (HER). Catal Surv Asia 2021;25:437-44.

146. Xia Y, Wu W, Wang H, Rao S, Zhang F, Zou G. Amorphous RuS2 electrocatalyst with optimized active sites for hydrogen evolution. Nanotechnology 2020;31:145401.

147. Zhang X, Li K, Wen B, Ma J, Diao D. Machine learning accelerated DFT research on platinum-modified amorphous alloy surface catalysts. Chin Chem Lett 2023;34:107833.

148. Zhang J, Wu Y, Hao H, et al. Construction of amorphous Fe0.95S1.05 nanorods with high electrocatalytic activity for enhanced hydrogen evolution reaction. Electrochim Acta 2022;402:139554.

149. Wu G, Han X, Cai J, et al. In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity. Nat Commun 2022;13:4200.

150. Chunduri A, Bhide A, Gupta S, et al. Exploring the role of multi-catalytic sites in an amorphous Co-W-B electrocatalyst for hydrogen and oxygen evolution reactions. ACS Appl Energy Mater 2023;6:4630-41.

151. Shao G, Wang Q, Miao F, Li J, Li Y, Shen B. Improved catalytic efficiency and stability by surface activation in Fe-based amorphous alloys for hydrogen evolution reaction in acidic electrolyte. Electrochim Acta 2021;390:138815.

152. Yu J, Li A, Li L, Li X, Wang X, Guo L. Morphological and structural engineering in amorphous Cu2MoS4 nanocages for remarkable electrocatalytic hydrogen evolution. Sci China Mater 2019;62:1275-84.

153. Zhao L, Chang B, Dong T, et al. Laser synthesis of amorphous CoSx nanospheres for efficient hydrogen evolution and nitrogen reduction reactions. J Mater Chem A 2022;10:20071-9.

154. Lu W, Li X, Wei F, et al. In-situ transformed Ni, S-Codoped CoO from amorphous Co-Ni sulfide as an efficient electrocatalyst for hydrogen evolution in alkaline media. ACS Sustain Chem Eng 2019;7:12501-9.

155. Hu M, Qian Y, Yu S, et al. Amorphous MoS2 decorated Ni3S2 with a core-shell structure of urchin-like on nickel-foam efficient hydrogen evolution in acidic and alkaline media. Small 2024;20:e2305948.

156. Ge Y, Ge J, Huang B, et al. Synthesis of amorphous Pd-based nanocatalysts for efficient alcoholysis of styrene oxide and electrochemical hydrogen evolution. Nano Res 2023;16:4650-5.

157. Bodhankar PM, Sarawade PB, Kumar P, et al. Nanostructured metal phosphide based catalysts for electrochemical water splitting: a review. Small 2022;18:e2107572.

158. Jamesh M, Sun X. Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting - a review. J Power Sources 2018;400:31-68.

159. Li X, Zhang H, Hu Q, et al. Amorphous NiFe oxide-based nanoreactors for efficient electrocatalytic water oxidation. Angew Chem Int Ed 2023;62:e202300478.

160. Liu S, Geng S, Li L, et al. A top-down strategy for amorphization of hydroxyl compounds for electrocatalytic oxygen evolution. Nat Commun 2022;13:1187.

161. Liu X, Yin H, Zhang S, et al. Revealing the effect of crystallinity and oxygen vacancies of Fe-Co phosphate on oxygen evolution for high-current water splitting. J Colloid Interface Sci 2024;653:1379-87.

162. Xiao L, Liang Y, Li Z, et al. Amorphous FeNiNbPC nanoprous structure for efficient and stable electrochemical oxygen evolution. J Colloid Interface Sci 2022;608:1973-82.

163. Zheng Y, Guo R, Li X, et al. Synthesis of amorphous trimetallic PdCuNiP nanoparticles for enhanced OER. Front Chem 2023;11:1122333.

164. Zhao C, Li N, Zhang R, et al. Surface reconstruction of La0.8Sr0.2Co0.8Fe0.2O3-δ for superimposed OER performance. ACS Appl Mater Interfaces 2019;11:47858-67.

165. Kalathil S, Katuri KP, Saikaly PE. Synthesis of an amorphous Geobacter -manganese oxide biohybrid as an efficient water oxidation catalyst. Green Chem 2020;22:5610-8.

166. Gou W, Xia Z, Tan X, et al. Highly active and stable amorphous IrOx/CeO2 nanowires for acidic oxygen evolution. Nano Energy 2022;104:107960.

167. Zhang L, Lu C, Ye F, et al. Vacancies boosting strategy enabling enhanced oxygen evolution activity in a library of novel amorphous selenite electrocatalysts. Appl Catal B Environ 2021;284:119758.

168. Wang S, Zhao R, Zheng T, et al. Cerium decorated amorphous ternary Ni-Ce-B catalyst for enhanced electrocatalytic water oxidation. Surf Interfaces 2021;26:101447.

169. Li Z, Li C, Huang J, et al. Structure engineering of amorphous P-CoS hollow electrocatalysts for promoted oxygen evolution reaction. Int J Hydrogen Energy 2022;47:15189-97.

170. Kim C, Dionigi F, Beermann V, Wang X, Möller T, Strasser P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv Mater 2019;31:e1805617.

171. Tian J, Shen Y, Liu P, et al. Recent advances of amorphous-phase-engineered metal-based catalysts for boosted electrocatalysis. J Mater Sci Technol 2022;127:1-18.

172. Biemolt J, Rothenberg G, Yan N. Understanding the roles of amorphous domains and oxygen-containing groups of nitrogen-doped carbon in oxygen reduction catalysis: toward superior activity. Inorg Chem Front 2020;7:177-85.

173. Liu L, Zhao X, Li R, Su H, Zhang H, Liu Q. Subnano amorphous Fe-based clusters with high mass activity for efficient electrocatalytic oxygen reduction reaction. ACS Appl Mater Interfaces 2019;11:41432-9.

174. Poon KC, Tan DC, Vo TD, et al. Newly developed stepwise electroless deposition enables a remarkably facile synthesis of highly active and stable amorphous Pd nanoparticle electrocatalysts for oxygen reduction reaction. J Am Chem Soc 2014;136:5217-20.

175. Bai F, He Y, Xu L, et al. Improved ORR/OER bifunctional catalytic performance of amorphous manganese oxides prepared by photochemical metal-organic deposition. RSC Adv 2022;12:2408-15.

176. Wang Y, Liu J, Yuan H, Liu F, Hu T, Yang B. Strong electronic interaction between amorphous MnO2 nanosheets and ultrafine Pd nanoparticles toward enhanced oxygen reduction and ethylene glycol oxidation reactions. Adv Funct Mater 2023;33:2211909.

177. Li W, Fu W, Bai S, et al. Inspired electrocatalytic performance by unique amorphous PdCu nanoparticles on black phosphorus. Electrochim Acta 2023;446:142082.

178. Li Q, Kong D, Zhao X, et al. Short-range amorphous carbon nanosheets for oxygen reduction electrocatalysis. Nanoscale Adv 2020;2:5769-76.

179. Pan D, Chen P, Zhou L, Liu J, Guo Z, Song J. Self-template construction of 2D amorphous N-doped CoFe-mesoporous phosphate microsheets for zinc-air batteries. J Power Sources 2021;498:229859.

180. Song S, Li W, Deng Y, et al. TiC supported amorphous MnOx as highly efficient bifunctional electrocatalyst for corrosion resistant oxygen electrode of Zn-air batteries. Nano Energy 2020;67:104208.

181. Moloudi M, Noori A, Rahmanifar MS, et al. Layered double hydroxide templated synthesis of amorphous NiCoFeB as a multifunctional electrocatalyst for overall water splitting and rechargeable zinc-air batteries. Adv Energy Mater 2023;13:2203002.

182. Jin D, Lee Y, Kim IY, Lee C, Kim MH. Impact of controlling the crystallinity on bifunctional electrocatalytic performances toward methanol oxidation and oxygen reduction in binary Pd-Cr solid solution. J Mater Chem A 2023;11:16243-54.

183. Yao Y, Zhuang W, Li R, et al. Sn-based electrocatalysts for electrochemical CO2 reduction. Chem Commun 2023;59:9017-28.

184. Han H, Jin S, Park S, et al. Plasma-induced oxygen vacancies in amorphous MnOx boost catalytic performance for electrochemical CO2 reduction. Nano Energy 2021;79:105492.

185. Xiong Y, Wei B, Wu M, et al. Rapid synthesis of amorphous bimetallic copper-bismuth electrocatalysts for efficient electrochemical CO2 reduction to formate in a wide potential window. J CO2 Util 2021;51:101621.

186. Duan YX, Meng FL, Liu KH, et al. Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies. Adv Mater 2018;30:e1706194.

187. Zhang J, Yin R, Shao Q, Zhu T, Huang X. Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction. Angew Chem Int Ed 2019;58:5609-13.

188. Wu Y, Zhai P, Cao S, et al. Beyond d orbits: steering the selectivity of electrochemical CO2 reduction via hybridized sp band of sulfur-incorporated porous Cd architectures with dual collaborative sites. Adv Energy Mater 2020;10:2002499.

189. Zhou JH, Yuan K, Zhou L, et al. Boosting electrochemical reduction of CO2 at a low overpotential by amorphous Ag-Bi-S-O decorated Bi0 nanocrystals. Angew Chem Int Ed 2019;58:14197-201.

190. Dong Z, Sun Q, Xu GR, et al. Universal synthesized strategy for amorphous Pd-Based nanosheets boosting ambient ammonia electrosynthesis. Small Methods 2023;7:e2201225.

191. Xu W, Zhang M, Ma C, Wu S, Liu Y. Amorphous NiSb2O6-x nanofiber: a d-/p-block Janus electrocatalyst toward efficient NH3 synthesis through boosted N2 adsorption and activation. Appl Catal B Environ 2022;308:121225.

192. Wang Y, Tian Y, Zhang J, et al. Tuning morphology and electronic structure of amorphous NiFeB nanosheets for enhanced electrocatalytic N2 reduction. ACS Appl Energy Mater 2020;3:9516-22.

193. Chu K, Nan H, Li Q, Guo Y, Tian Y, Liu W. Amorphous MoS3 enriched with sulfur vacancies for efficient electrocatalytic nitrogen reduction. J Energy Chem 2021;53:132-8.

194. Xiao L, Liang Y, Li Z, et al. Amorphous CoMoO4 with nanoporous structures for electrochemical ammonia synthesis under ambient conditions. ACS Sustain Chem Eng 2020;8:19072-83.

195. Fang Z, Wu P, Qian Y, Yu G. Gel-derived amorphous bismuth-nickel alloy promotes electrocatalytic nitrogen fixation via optimizing nitrogen adsorption and activation. Angew Chem Int Ed 2021;60:4275-81.

Microstructures
ISSN 2770-2995 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/