REFERENCES

1. Jing J, Liu M, Colvin VL, Li W, Yu WW. Photocatalytic degradation of nitrogen-containing organic compounds over TiO2. J Mol Catal A Chem 2011;351:17-28.

2. Guan P, Zhou L, Yu Z, et al. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. J Energy Chem 2020;43:220-35.

3. Ponrouch A, Frontera C, Bardé F, Palacín MR. Towards a calcium-based rechargeable battery. Nat Mater 2016;15:169-72.

4. Nam KW, Kim S, Lee S, et al. The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett 2015;15:4071-9.

5. Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN. Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci 2014;66:1-86.

6. Muldoon J, Bucur CB, Oliver AG, et al. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ Sci 2012;5:5941-50.

7. Pramudita JC, Sehrawat D, Goonetilleke D, Sharma N. An initial review of the status of electrode materials for potassium-ion batteries. Adv Energy Mater 2017;7:1602911.

8. Han J, Niu Y, Bao SJ, Yu YN, Lu SY, Xu M. Nanocubic KTi2(PO4)3 electrodes for potassium-ion batteries. Chem Commun 2016;52:11661-4.

9. Jian Z, Luo W, Ji X. Carbon electrodes for K-ion batteries. J Am Chem Soc 2015;137:11566-9.

10. Hueso KB, Armand M, Rojo T. High temperature sodium batteries: status, challenges and future trends. Energy Environ Sci 2013;6:734-49.

11. Luo C, Xu Y, Zhu Y, et al. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano 2013;7:8003-10.

12. Yang X, Xu J, Chang Z, et al. Blood-capillary-inspired, free-standing, flexible, and low-cost super-hydrophobic N-CNTs@SS cathodes for high-capacity, high-rate, and stable Li-air batteries. Adv Energy Mater 2018;8:1702242.

13. Abouimrane A, Dambournet D, Chapman KW, Chupas PJ, Weng W, Amine K. A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J Am Chem Soc 2012;134:4505-8.

14. Liu J, Xu C, Chen Z, Ni S, Shen ZX. Progress in aqueous rechargeable batteries. Green Energy Environ 2018;3:20-41.

15. Wang Q, Sarkar A, Wang D, et al. Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries. Energy Environ Sci 2019;12:2433-42.

16. Wang Q, Yao M, Zhu A, Wang Q, Wu H, Zhang Y. Semi-metallic superionic layers suppressing voltage fading of Li-rich layered oxide towards superior-stable Li-ion batteries. Angew Chem Int Ed 2023;62:e202309049.

17. Kang S, Cheng J, Gao W, Cui L. Toward safer lithium metal batteries: a review. Energy Mater 2023;3:300043.

18. Pan Z, Liu X, Yang J, et al. Aqueous rechargeable multivalent metal-ion batteries: advances and challenges. Adv Energy Mater 2021;11:2100608.

19. Qiu S, Xu Y, Wu X, Ji X. Prussian blue analogues as electrodes for aqueous monovalent ion batteries. Electrochem Energy Rev 2022;5:242-62.

20. Dong N, Zhang F, Pan H. Towards the practical application of Zn metal anodes for mild aqueous rechargeable Zn batteries. Chem Sci 2022;13:8243-52.

21. Wan F, Zhang Y, Zhang L, et al. Reversible Oxygen redox chemistry in aqueous zinc-ion batteries. Angew Chem Int Ed 2019;58:7062-7.

22. Zhao K, Wang C, Yu Y, et al. Ultrathin surface coating enables stabilized zinc metal anode. Adv Mater Inter 2018;5:1800848.

23. Yang F, Yuwono JA, Hao J, et al. Understanding H2 evolution electrochemistry to minimize solvated water impact on zinc-anode performance. Adv Mater 2022;34:e2206754.

24. Zhao G, Rui K, Dou SX, Sun W. Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv Funct Mater 2018;28:1803291.

25. Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries. Nat Mater 2018;17:543-9.

26. Kim JY, Liu G, Shim GY, Kim H, Lee JK. Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes. Adv Funct Mater 2020;30:2004210.

27. He H, Tong H, Song X, Song X, Liu J. Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J Mater Chem A 2020;8:7836-46.

28. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001;414:359-67.

29. Olivetti EA, Ceder G, Gaustad GG, Fu X. Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 2017;1:229-43.

30. Wang L, Wang P, Wang T, Yin Y, Guo Y, Wang C. Prussian blue nanocubes as cathode materials for aqueous Na-Zn hybrid batteries. J Power Sources 2017;355:18-22.

31. Liu X, Ma L, Du Y, Lu Q, Yang A, Wang X. Vanadium pentoxide nanofibers/carbon nanotubes hybrid film for high-performance aqueous zinc-ion batteries. Nanomaterials 2021;11:1054.

32. Li Y, Yu D, Lin S, Sun D, Lei Z. Preparation of α-MnO2 nanorods/porous carbon cathode for aqueous zinc-ion batteries. Acta Chimica Sinica 2021;79:200-7.

33. Li Z, Liu T, Meng R, et al. Insights into the structure stability of prussian blue for aqueous zinc ion batteries. Energy Environ Mater 2021;4:111-6.

34. Liu Q, Ma Z, Chen Z, et al. A polyaniline surface-modified Prussian blue analogue cathode for flexible aqueous Zn-ion batteries. Chem Commun 2022;58:8226-9.

35. Sun W, Wang F, Hou S, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J Am Chem Soc 2017;139:9775-8.

36. Wu P, Kong X, Feng Y, et al. Phase engineering on amorphous/crystalline γ-Fe2O3 nanosheets for boosting dielectric loss and high-performance microwave absorption. Adv Funct Mater 2024;34:2311983.

37. Ding J, Du Z, Li B, et al. Unlocking the potential of disordered rocksalts for aqueous zinc-ion batteries. Adv Mater 2019;31:e1904369.

38. Caldeira V, Rouget R, Fourgeot F, et al. Controlling the shape change and dendritic growth in Zn negative electrodes for application in Zn/Ni batteries. J Power Sources 2017;350:109-16.

39. Wang X, Wang F, Wang L, et al. An aqueous rechargeable Zn//Co3O4 Battery with high energy density and good cycling behavior. Adv Mater 2016;28:4904-11.

40. Zhou J, Shan L, Wu Z, Guo X, Fang G, Liang S. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem Commun 2018;54:4457-60.

41. He P, Yan M, Zhang G, et al. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv Energy Mater 2017;7:1601920.

42. Jia Z, Wang B, Wang Y. Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries. Mater Chem Phys 2015;149-50:601-6.

43. Zhang L, Chen L, Zhou X, Liu Z. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv Energy Mater 2015;5:1400930.

44. Alfaruqi MH, Gim J, Kim S, et al. Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J Power Sources 2015;288:320-7.

45. Islam S, Alfaruqi MH, Mathew V, et al. Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J Mater Chem A 2017;5:23299-309.

46. Alfaruqi MH, Mathew V, Gim J, et al. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem Mater 2015;27:3609-20.

47. Wei C, Xu C, Li B, Du H, Kang F. Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage. J Phys Chem Solids 2012;73:1487-91.

48. Xuan X, Qian M, Pan L, et al. A hollow tubular NiCo layacknered double hydroxide@Ag nanowire structure for high-power-density flexible aqueous Ni//Zn battery. J Energy Chem 2022;70:593-603.

49. Huang J, Li Y, Xie R, et al. Structural engineering of cathodes for improved Zn-ion batteries. J Energy Chem 2021;58:147-55.

50. Cui Y, Ding Y, Guo L, et al. Ultra-long Zn3V2O7(OH)2·2H2O nanowires grown on carbon cloth as cathode material for aqueous zinc-ion batteries. Energy Mater 2023;3:300023.

51. Zhu Y, Guan P, Zhu R, et al. Recent advances in flexible alkaline zinc-based batteries: materials, structures, and perspectives. J Energy Chem 2023;87:61-88.

52. Lu C, Yang Z, Wang Y, et al. Ethylene glycol-regulated ammonium vanadate with stable layered structure and favorable interplanar spacing as high-performance cathode for aqueous zinc ion batteries. Chin Chem Lett 2023;34:108572.

53. Wei W, Cui X, Chen W, Ivey DG. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 2011;40:1697-721.

54. Gao X, Wu H, Li W, et al. H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery. Small 2020;16:e1905842.

55. Wan F, Zhang L, Dai X, Wang X, Niu Z, Chen J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat Commun 2018;9:1656.

56. Álvarez-serrano I, Almodóvar P, Giraldo DA, Llopis F, Solsona B, López ML. Stable manganese-oxide composites as cathodes for Zn-ion batteries: interface activation from in situ layer electrochemical deposition under 2 V. Adv Mater Inter 2022;9:2101924.

57. Shen Z, Tang Z, Li C, et al. Precise proton redistribution for two-electron redox in aqueous zinc/manganese dioxide batteries. Adv Energy Mater 2021;11:2102055.

58. Jing F, Liu Y, Shang Y, et al. Dual ions intercalation drives high-performance aqueous Zn-ion storage on birnessite-type manganese oxides cathode. Energy Stor Mater 2022;49:164-71.

59. Zhao Y, Zhang P, Liang J, et al. Unlocking layered double hydroxide as a high-performance cathode material for aqueous zinc-ion batteries. Adv Mater 2022;34:e2204320.

60. Guo D, Zhao W, Pan F, Liu G. Block copolymer-derived porous carbon fibers enable high MnO2 loading and fast charging in aqueous zinc-ion battery. Batteries Supercaps 2022;5:e202100380.

61. Dai H, Zhou R, Zhang Z, Zhou J, Sun G. Design of manganese dioxide for supercapacitors and zinc-ion batteries: similarities and differences. Energy Mater 2022;2:200040.

62. Chen H, Dai C, Xiao F, et al. Reunderstanding the reaction mechanism of aqueous Zn-Mn batteries with sulfate electrolytes: role of the zinc sulfate hydroxide. Adv Mater 2022;34:e2109092.

63. Shoji T, Hishinuma M, Yamamoto T. Zinc-manganese dioxide galvanic cell using zinc sulphate as electrolyte. Rechargeability of the cell. J Appl Electrochem 1988;18:521-6.

64. Xu C, Li B, Du H, Kang F. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed 2012;51:933-5.

65. Pan H, Shao Y, Yan P, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy 2016;1:16039.

66. Zhu C, Fang G, Liang S, et al. Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery. Energy Stor Mater 2020;24:394-401.

67. Khamsanga S, Pornprasertsuk R, Yonezawa T, Mohamad AA, Kheawhom S. δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries. Sci Rep 2019;9:8441.

68. Alfaruqi MH, Gim J, Kim S, et al. A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem Commun 2015;60:121-5.

69. Mathew V, Sambandam B, Kim S, et al. Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: a focused view on performance, mechanism, and developments. ACS Energy Lett 2020;5:2376-400.

70. Fu Y, Wei Q, Zhang G, et al. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv Energy Mater 2018;8:1801445.

71. Wang Q, Liu Y, Chen P. Phenazine-based organic cathode for aqueous zinc secondary batteries. J Power Sources 2020;468:228401.

72. Huang Y, Mou J, Liu W, et al. Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 batteries with participation of Mn2. Nanomicro Lett 2019;11:49.

73. Zhao Q, Chen X, Wang Z, et al. Unravelling H+/Zn2+ synergistic intercalation in a novel phase of manganese oxide for high-performance aqueous rechargeable battery. Small 2019;15:e1904545.

74. Wang L, Zheng J. Recent advances in cathode materials of rechargeable aqueous zinc-ion batteries. Mater Today Adv 2020;7:100078.

75. Qiu N, Chen H, Yang Z, Sun S, Wang Y. Synthesis of manganese-based complex as cathode material for aqueous rechargeable batteries. RSC Adv 2018;8:15703-8.

76. Siamionau U, Aniskevich Y, Mazanik A, et al. Rechargeable zinc-ion batteries with manganese dioxide cathode: How critical is choice of manganese dioxide polymorphs in aqueous solutions? J Power Sources 2022;523:231023.

77. Bi S, Wu Y, Cao A, Tian J, Zhang S, Niu Z. Free-standing three-dimensional carbon nanotubes/amorphous MnO2 cathodes for aqueous zinc-ion batteries with superior rate performance. Mater Today Energy 2020;18:100548.

78. Liu W, Zhang X, Huang Y, et al. β-MnO2 with proton conversion mechanism in rechargeable zinc ion battery. J Energy Chem 2021;56:365-73.

79. Kang J, Zhao Z, Li H, Meng Y, Hu B, Lu H. An overview of aqueous zinc-ion batteries based on conversion-type cathodes. Energy Mater 2022;2:200009.

80. Xu Y, Huang W, Liu J, et al. Promoting the reversibility of electrolytic MnO2-Zn battery with high areal capacity by VOSO4 mediator. Energy Mater 2024;4:400005.

81. Liang G, Mo F, Li H, et al. A universal principle to design reversible aqueous batteries based on deposition-dissolution mechanism. Adv Energy Mater 2019;9:1901838.

82. Guo X, Zhou J, Bai C, Li X, Fang G, Liang S. Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater Today Energy 2020;16:100396.

83. Kankanallu VR, Zheng X, Leschev D, et al. Elucidating a dissolution-deposition reaction mechanism by multimodal synchrotron X-ray characterization in aqueous Zn/MnO2 batteries. Energy Environ Sci 2023;16:2464-82.

84. Li H, Yao H, Sun X, et al. Interface regulated MnO2/Mn2+ redox chemistry in aqueous Zn ion batteries. Chem Eng J 2022;446:137205.

85. Lee B, Seo HR, Lee HR, et al. Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries. ChemSusChem 2016;9:2948-56.

86. Wang L, Cao X, Xu L, Chen J, Zheng J. Transformed akhtenskite MnO2 from Mn3O4 as cathode for a rechargeable aqueous zinc ion battery. ACS Sustain Chem Eng 2018;6:16055-63.

87. Kim SH, Oh SM. Degradation mechanism of layered MnO2 cathodes in Zn/ZnSO4/MnO2 rechargeable cells. J Power Sources 1998;72:150-8.

88. Yang H, Zhang T, Chen D, et al. Protocol in evaluating capacity of Zn-Mn aqueous batteries: a clue of pH. Adv Mater 2023;35:e2300053.

89. Sambandam B, Mathew V, Kim S, et al. An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries. Chem 2022;8:924-46.

90. Ma Y, Xu M, Liu R, et al. Molecular tailoring of MnO2 by bismuth doping to achieve aqueous zinc-ion battery with capacitor-level durability. Energy Stor Mater 2022;48:212-22.

91. Wang C, Zeng Y, Xiao X, et al. γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J Energy Chem 2020;43:182-7.

92. Zhao M, Luo Y, Zhu L, et al. Ultrathin δ-MnO2 nanosheets branched onto N-doped carbon nanotubes as binder-free cathode electrodes for aqueous zinc-ion batteries with a high areal capacity. J Alloys Compd 2022;913:165124.

93. Li L, Yang Q, Wang D, et al. Facile synthesis λ-MnO2 spinel for highly effective catalytic oxidation of benzene. Chem Eng J 2021;421:127828.

94. Zhang N, Cheng F, Liu Y, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous zn-ion battery. J Am Chem Soc 2016;138:12894-901.

95. Pam ME, Yan D, Yu J, et al. Microstructural engineering of cathode materials for advanced zinc-ion aqueous batteries. Adv Sci 2020;8:2002722.

96. Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 2015;8:702-30.

97. Hao J, Mou J, Zhang J, et al. Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim Acta 2018;259:170-8.

98. Wang Y, Li H, He P, Hosono E, Zhou H. Nano active materials for lithium-ion batteries. Nanoscale 2010;2:1294-305.

99. Song H, Liu Y, Zhang C, Liu C, Cao G. Mo-doped LiV3O8 nanorod-assembled nanosheets as a high performance cathode material for lithium ion batteries. J Mater Chem A 2015;3:3547-58.

100. Alfaruqi MH, Islam S, Gim J, et al. A high surface area tunnel-type α-MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries. Chem Phys Lett 2016;650:64-8.

101. Nam KW, Kim H, Choi JH, Choi JW. Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ Sci 2019;12:1999-2009.

102. Li X, Zhou Q, Yang Z, et al. Unraveling the role of nitrogen-doped carbon nanowires incorporated with MnO2 nanosheets as high performance cathode for zinc-ion batteries. Energy Environ Mater 2023;6:e12378.

103. Zhang Y, Deng S, Li Y, et al. Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn-MnO2 batteries. Energy Stor Mater 2020;29:52-9.

104. Liu G, Huang H, Bi R, Xiao X, Ma T, Zhang L. K+ pre-intercalated manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous zinc-ion batteries. J Mater Chem A 2019;7:20806-12.

105. Hong S, Jin S, Deng Y, et al. Efficient scalable hydrothermal synthesis of MnO2 with controlled polymorphs and morphologies for enhanced battery cathodes. ACS Energy Lett 2023;8:1744-51.

106. Wang H, Yin K, Qin N, et al. Oxygen-deficient titanium dioxide as a functional host for lithium-sulfur batteries. J Mater Chem A 2019;7:10346-53.

107. Ren Q, Qin N, Liu B, et al. An oxygen-deficient vanadium oxide@N-doped carbon heterostructure for sodium-ion batteries: insights into the charge storage mechanism and enhanced reaction kinetics. J Mater Chem A 2020;8:3450-8.

108. Uchaker E, Zheng YZ, Li S, Candelaria SL, Hu S, Cao GZ. Better than crystalline: amorphous vanadium oxide for sodium-ion batteries. J Mater Chem A 2014;2:18208-14.

109. Ku JH, Ryu JH, Kim SH, Han OH, Oh SM. Reversible lithium storage with high mobility at structural defects in amorphous molybdenum dioxide electrode. Adv Funct Mater 2012;22:3658-64.

110. Xiao D, Lv X, Fan J, Li Q, Chen Z. Zn-based batteries for energy storage. Energy Mater 2023;3:300007.

111. Huang S, Liu L, Zheng Y, et al. Efficient sodium storage in rolled-up amorphous Si nanomembranes. Adv Mater 2018;30:e1706637.

112. Fan L, Li X, Yan B, et al. Controlled SnO2 crystallinity effectively dominating sodium storage performance. Adv Energy Mater 2016;6:1502057.

113. Cai Y, Chua R, Huang S, Ren H, Srinivasan M. Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable zinc-ion battery. Chem Eng J 2020;396:125221.

114. Liang R, Fu J, Deng Y, et al. Parasitic electrodeposition in Zn-MnO2 batteries and its suppression for prolonged cyclability. Energy Stor Mater 2021;36:478-84.

115. Hu Q, Jiang X, He M, Zheng Q, Lam KH, Lin D. Core-shell nanostructured MnO2@Co9S8 arrays for high-performance supercapacitors. Electrochim Acta 2020;338:135896.

116. Li Q, Wang Y, Mo F, et al. Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure. Adv Energy Mater 2021;11:2003931.

117. Islam S, Alfaruqi MH, Song J, et al. Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications. J Energy Chem 2017;26:815-9.

118. Wu B, Zhang G, Yan M, et al. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 2018;14:e1703850.

119. Gök A, Sarı B, Talu M. Synthesis and characterization of conducting substituted polyanilines. Synth Met 2004;142:41-8.

120. Benhaddad L, Gamby J, Makhloufi L, Pailleret A, Pillier F, Takenouti H. Improvement of capacitive performances of symmetric carbon/carbon supercapacitors by addition of nanostructured polypyrrole powder. J Power Sources 2016;307:297-307.

121. Lu Q, Zhou Y. Synthesis of mesoporous polythiophene/MnO2 nanocomposite and its enhanced pseudocapacitive properties. J Power Sources 2011;196:4088-94.

122. Mao J, Wu F, Shi W, et al. Preparation of polyaniline-coated composite aerogel of MnO2 and reduced graphene oxide for high-performance zinc-ion battery. Chin J Polym Sci 2020;38:514-21.

123. Bao X, Zhang Z, Zhou D. Pseudo-capacitive performance enhancement of α-MnO2 via in situ coating with polyaniline. Synth Met 2020;260:116271.

124. Zang X, Li X, Zhu M, et al. Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes. Nanoscale 2015;7:7318-22.

125. Tantawy HR, Kengne BF, Mcilroy DN, et al. X-ray photoelectron spectroscopy analysis for the chemical impact of solvent addition rate on electromagnetic shielding effectiveness of HCl-doped polyaniline nanopowders. J Appl Phys 2015;118:175501.

126. Han J, Wang K, Liu W, et al. Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell. Nanoscale 2018;10:13083-91.

127. Kamenskii MA, Volkov FS, Eliseeva SN, Holze R, Kondratiev VV. Comparative Study of PEDOT- and PEDOT:PSS Modified δ-MnO2 cathodes for aqueous zinc batteries with enhanced properties. J Electrochem Soc 2023;170:010505.

128. Li Y, Yao H, Liu X, Yang X, Yuan D. Roles of electrolyte additive in Zn chemistry. Nano Res 2023;16:9179-94.

129. Qiu N, Chen H, Yang Z, Sun S, Wang Y. Low-cost birnessite as a promising cathode for high-performance aqueous rechargeable batteries. Electrochim Acta 2018;272:154-60.

130. Zhang N, Cheng F, Liu J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat Commun 2017;8:405.

131. Fan W, Xiong X, Xu Y, et al. Constructing stable Zn anodes for aqueous rechargeable zinc batteries. Next Energy 2023;1:100049.

132. Bhattachar SN, Deschenes LA, Wesley JA. Solubility: it’s not just for physical chemists. Drug Discov Today 2006;11:1012-8.

133. Tie Z, Niu Z. Design strategies for high-performance aqueous Zn/organic batteries. Angew Chem Int Ed 2020;59:21293-303.

134. Tie Z, Liu L, Deng S, Zhao D, Niu Z. Proton insertion chemistry of a zinc-organic battery. Angew Chem Int Ed 2020;59:4920-4.

135. Liu S, He J, Liu D, et al. Suppressing vanadium dissolution by modulating aqueous electrolyte structure for ultralong lifespan zinc ion batteries at low current density. Energy Stor Mater 2022;49:93-101.

136. Liu N, Wu X, Yin Y, et al. Constructing the efficient ion diffusion pathway by introducing oxygen defects in Mn2O3 for high-performance aqueous zinc-ion batteries. ACS Appl Mater Interfaces 2020;12:28199-205.

137. Jin X, Song L, Dai C, et al. A flexible aqueous zinc-iodine microbattery with unprecedented energy density. Adv Mater 2022;34:e2109450.

138. Geng Y, Pan L, Peng Z, et al. Electrolyte additive engineering for aqueous Zn ion batteries. Energy Stor Mater 2022;51:733-55.

139. Chen M, Zhou W, Wang A, et al. Anti-freezing flexible aqueous Zn-MnO2 batteries working at -35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. J Mater Chem A 2020;8:6828-41.

140. Liu X, Li X, Yang X, et al. Influence of water on gel electrolytes for zinc-ion batteries. Chem Asian J 2023;18:e202201280.

141. Yuan D, Li X, Yao H, et al. A liquid crystal ionomer-type electrolyte toward ordering-induced regulation for highly reversible zinc ion battery. Adv Sci 2023;10:e2206469.

142. Yuan D, Zhao J, Ren H, et al. Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew Chem Int Ed 2021;60:7213-9.

143. Liu B, Yuan X, Li Y. Colossal capacity loss during calendar aging of Zn battery chemistries. ACS Energy Lett 2023;8:3820-8.

144. Zhu R, Xiong Z, Yang H, et al. Anode/cathode dual-purpose aluminum current collectors for aqueous zinc-ion batteries. Adv Funct Mater 2023;33:2211274.

145. Mu Y, Li Z, Wu BK, et al. 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nat Commun 2023;14:4205.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/